|
|
14-3-3 |
C.16 |
|
1H-NMR |
1.30 |
|
2-aminoethoxydiphenyl borate |
C.14 |
|
2n pollen |
D.28 |
|
2nd generation biofuel |
4.06 |
|
9-cis-epoxycarotenoid dioxygenase |
2.61 |
|
9K SNP array v1 |
D.47 |
A |
|
ABA |
2.06, D.25 |
|
ABC1K proteins |
2.35 |
|
abiotic stress |
2.17, 2.35, B.35 |
|
abscisic acid |
2.11, 2.25, 2.30, 2.35, 2.61, A.11 |
|
ABTS |
1.31 |
|
adaptation |
2.11, 2.24, D.21 |
|
adulteration |
1.25 |
|
algal biomass |
4.09 |
|
algal heterologous expression |
4.07 |
|
alien gene transfer |
2.08 |
|
allelic variation |
1.13 |
|
almond |
D.46 |
|
alpha amylase inhibitor |
1.26 |
|
ancient varieties |
D.45 |
|
anthocyanin mutants |
1.09 |
|
anthocyanins |
1.06 |
|
antioxidant |
1.08, 1.09 |
|
antioxidant capacity |
1.16, 1.31 |
|
antioxidant genes |
2.33 |
|
Antirrhinum majus |
A.21 |
|
Aphis gossypii |
B.14 |
|
apple |
B.25 |
|
apricot |
2.62 |
|
Apulian genetic resources |
D.02 |
|
Arabidopsis halleri |
A.05 |
|
Arabidopsis thaliana |
2.15, 2.33, 2.34, 2.36, 2.51, 2.60, A.02, A.06, A.07, A.08, A.10, B.10, C.05, C.09, C.16, C.20, C.23, D.39 |
|
arbuscular mycorrhizal fungi |
2.53, A.20 |
|
arsenic |
B.34 |
|
Artemisia annua L. |
1.05 |
|
Arundo donax |
4.03, 4.25 |
|
ascorbate |
C.06 |
|
ascorbate peroxidase |
1.24 |
|
ascorbic acid |
1.07 |
|
Asn-linked oligosaccharides |
C.07 |
|
association |
D.04 |
|
association analysis |
D.47 |
|
association mapping |
D.34, D.48 |
|
astaxanthin |
4.11 |
|
ATP synthase dimer |
C.12 |
|
AtSRT2 |
2.60 |
|
auxin |
4.17, A.08, A.19 |
|
AWDS |
2.24 |
|
axillary meristem |
A.21 |
B |
|
bakanae disease |
2.47 |
|
barcoding |
D.42 |
|
barley |
2.10, D.07, D.21 |
|
basic helix-loop-helix |
2.40 |
|
beneficial virus |
2.48 |
|
berry |
B.16 |
|
biochemical traits |
A.18 |
|
bio-chemicals |
4.21 |
|
biodiesel |
4.12, 4.14 |
|
biodiversity |
2.19, D.02, D.40 |
|
bioenergetics |
C.09 |
|
bioenergy |
4.10, 4.18, 4.20 |
|
biofactory |
4.04 |
|
biofortification |
1.15 |
|
biofuel |
4.07, 4.21 |
|
biogas plant |
4.28 |
|
biological databases |
B.08 |
|
biomass |
4.01, 4.10, 4.15, 4.20, 4.23, 4.27 |
|
biomass production |
4.12 |
|
biomass yield |
4.19 |
|
bioproducts |
4.01 |
|
biorefining |
4.01 |
|
bioremediation |
4.13 |
|
biosensors |
1.28 |
|
biosynthetic pathways |
1.03 |
|
biotic stress |
2.14, 2.45, 2.49 |
|
biscuits |
1.26 |
|
bisulfite sequencing |
B.32 |
|
Bjerkandera adusta |
4.27 |
|
Botrytis cinerea |
B.21 |
|
brachytic 2 |
4.17 |
|
branching |
A.21, D.18 |
|
Brassica |
2.23 |
|
Brassicaceae |
1.32 |
|
brassinosteroids |
2.26 |
|
breeding |
1.32, 4.01, D.36 |
C |
|
C2H2 zinc finger |
B.07 |
|
Ca2+ signalling |
C.08 |
|
CAD |
4.24 |
|
cadmium-Cd |
4.16 |
|
calcium imaging |
A.03 |
|
calcium signalling |
C.13 |
|
calcium uniporter |
C.09 |
|
callose |
2.45 |
|
Calvin-Benson cycle |
C.21, C.24 |
|
Cameleon |
C.13 |
|
Camelina sativa |
1.32 |
|
cAMP |
2.51 |
|
candidate gene |
2.44, 4.23 |
|
Cannabis sativa |
1.30 |
|
Capsicum annuum L. |
1.08, 1.12 |
|
CAPS-marker |
1.07 |
|
cardamine |
C.17 |
|
cardoon |
4.20 |
|
carotenoid |
4.16, D.25 |
|
carotenoid cleavage dioxygenases |
1.11 |
|
carotenoid content |
1.11 |
|
CBL-interacting protein kinases |
C.08 |
|
cell compartmentalization |
1.05 |
|
cell cultures |
1.05 |
|
cell cycle |
2.60 |
|
cell death |
2.04 |
|
cell wall |
2.50, 4.22, B.38 |
|
cell wall degradation |
4.07 |
|
cell-wall degrading enzymes |
4.06 |
|
central carbon metabolism |
C.20 |
|
cereals |
D.22 |
|
CES |
C.04 |
|
C-glucosylflavones |
1.15 |
|
cGMP |
2.51 |
|
characterization |
D.22 |
|
Chicorium intybus |
B.18 |
|
Chlamydomonas reinhardti |
C.03 |
|
Chlorella vulgaris |
4.19 |
|
chlorophyll |
4.16 |
|
chloroplast |
C.02, C.22 |
|
chloroplast DNA |
D.45 |
|
chloroplast transformation |
1.21 |
|
chloroplast ultrastructure |
1.21 |
|
chromatin |
B.31 |
|
chromatin remodeling |
2.07 |
|
chromium |
B.34 |
|
chromosome sorting |
B.28 |
|
circadian clock |
B.24 |
|
citric acid |
D.49 |
|
Citrus |
B.02 |
|
Citrus sinensis (L.) Osbeck |
D.49 |
|
clones collection |
4.25 |
|
CO2 |
4.12 |
|
codon usage |
C.17 |
|
cold tolerance |
2.31 |
|
comparative genomics |
B.04, B.08 |
|
complete chloroplast genome |
D.33 |
|
COMT |
4.24 |
|
copper |
2.45 |
|
co-regulation |
1.17 |
|
CRISPR/cas 9 |
2.03 |
|
crocetin |
B.01 |
|
crocin |
B.01 |
|
cross species database |
B.04 |
|
cryptic variability |
D.20 |
|
Cucumis sativus |
A.04 |
|
Cucurbita pepo L. |
B.14, D.30 |
|
cultivar |
D.36 |
|
cuticular waxes |
2.27 |
|
cyanobacteria |
4.09 |
|
cyclodextrin |
1.05 |
|
Cynara |
D.33 |
|
Cynara cardunculus |
4.21 |
|
cysteine |
C.24 |
|
cytokinin |
A.08 |
|
cytotype variation |
D.51 |
|
D
|
|
DAMPs |
4.08 |
|
Dasypyrum villosum |
D.14 |
|
data integration |
B.31 |
|
data mining |
B.06 |
|
DDR |
2.60 |
|
de novo assembly |
B.09 |
|
de novo transcriptome assembly |
B.14 |
|
defense responses |
B.10 |
|
defense systems |
2.46 |
|
dehydration |
4.03 |
|
Della proteins |
A.07 |
|
development regulation |
B.39 |
|
DHPLC |
D.06 |
|
diabetes vaccine |
1.33 |
|
diagnosis |
1.34 |
|
different light intensities |
4.11 |
|
differentially expressed genes (DEGs) |
1.17 |
|
divergent selection |
2.31 |
|
DNA based traceability |
1.25 |
|
DNA glycosylases |
2.34 |
|
DNA methylation |
2.10, B.10, B.32, B.35 |
|
DNA repair |
2.07 |
|
DNA strand breaks |
A.10 |
|
double-flower |
2.56 |
|
DPPH |
1.31 |
|
drought |
2.17, 2.22, 2.25, 2.29, 2.53 |
|
drought resistance |
2.21 |
|
drought response |
A.13 |
|
drought stress |
2.09, 2.27, A.11 |
|
durum wheat |
1.13, 1.28, 2.20, 2.41, B.19, B.22, B.23, D.06, D.10, D.13, D.15, D.16 |
|
durum wheat grains |
1.16 |
E |
|
early response |
B.13 |
|
ecophysiology |
2.38 |
|
edible plants |
1.33 |
|
editing |
2.03 |
|
eggplant |
B.34 |
|
Ehd1 |
2.22 |
|
electron flow |
C.01 |
|
embolism |
2.06, 2.30 |
|
embryogenic cells |
D.38 |
|
EMDV |
2.14 |
|
empty pericarp mutants |
D.20 |
|
EMS mutagenesis |
D.38 |
|
EMS mutants |
4.14 |
|
endophyte |
A.16 |
|
endoplasmic reticulum |
1.02, C.10, C.11 |
|
endosperm |
A.19 |
|
endosymbiotic bacteria |
A.20 |
|
energy crop |
4.25 |
|
enzyme regulation |
C.21 |
|
epialleles |
B.29 |
|
epigenome |
B.37 |
|
epigenomics |
2.43, B.10, B.31, B.32 |
|
essential amino acids |
1.26 |
|
Ethylene Responsive Factor (ERF) |
1.19 |
|
expression analysis |
D.49 |
|
ezRAD |
D.27 |
F |
|
fatty acid |
1.21, 4.10 |
|
Fe-deficiency |
A.10 |
|
fig-type |
D.50 |
|
fine mapping |
4.18, D.46 |
|
fingerprinting |
D.26 |
|
FISH |
D.51 |
|
FISHIS |
B.28 |
|
flavonoid |
A.15, B.05, B.15 |
|
flavonoid transport |
C.14 |
|
flavonols |
1.06 |
|
flint maize |
D.19 |
|
floral induction |
2.22 |
|
florigen |
D.17 |
|
florigen activation complex |
A.17 |
|
flower development |
2.56 |
|
flowering |
A.17, B.07 |
|
flowering time |
D.03, D.15 |
|
food contaminants |
1.28 |
|
food-grade sorghum hybrid |
1.31 |
|
forage |
D.22 |
|
forward genetics |
D.07 |
|
free amino acids |
1.23 |
|
FRET |
A.03 |
|
fruit quality |
B.17 |
|
fruit texture |
B.25 |
|
FTIR spectroscopy |
B.38 |
|
fumonisin |
B.12 |
|
functional foods |
1.11 |
|
furanocumarins |
A.15 |
|
Fusarium |
D.29 |
|
Fusarium graminearum |
2.04 |
|
Fusarium oxysporum |
2.44 |
|
Fusarium verticillioides |
2.46, B.11, B.12 |
G |
|
gamma-zein |
C.11 |
|
garin protein content |
1.14 |
|
GBS |
B.17 |
|
GDH |
2.60 |
|
geminivirus |
2.54 |
|
gene annotation |
B.09 |
|
gene expression |
1.08, 2.20, 2.38, 2.50, 2.53, 2.61, 4.11, A.12, B.04, B.38 |
|
Gene Ontology Enrichment Analysis |
B.13 |
|
gene organization |
B.33 |
|
gene silencing |
B.03 |
|
gene transfer |
1.22 |
|
General Linear Model (GLM) |
D.47 |
|
genetic basis |
2.19 |
|
genetic diversity |
4.25, D.13, D.21, D.35, D.37, D.40 |
|
genetic mapping |
2.52 |
|
genetic resources |
D.23 |
|
genetic transformation |
D.39 |
|
genetic variation |
D.17 |
|
genome |
D.34 |
|
genome editing |
D.18 |
|
genome reference improvement |
B.40 |
|
genome-wide diversity map |
B.23, D.16 |
|
genomic DNA |
4.28 |
|
genomic fingerprinting |
D.09 |
|
genomics |
4.20 |
|
genotypes |
A.12 |
|
Genotyping-by-Sequencing (GBS) |
B.12, B.28, D.04, D.05, D.12 |
|
geomagnetic field reversal |
2.33 |
|
germination |
1.18 |
|
germplasm |
D.36 |
|
germplasm characterization |
D.02 |
|
germplasm safeguard |
D.02 |
|
germplasm valorisation |
D.02 |
|
GFP |
A.16 |
|
giberellins |
A.07 |
|
GIS |
D.12 |
|
globe artichoke |
B.36 |
|
Glomus intraradices |
A.15 |
|
glucosinolates |
1.32 |
|
glutamate 1-semialdehyde aminotransferase |
C.22 |
|
glutamate-like receptor |
C.13 |
|
glutathione transferase |
2.49 |
|
glutathionylation |
C.23, C.24 |
|
Glycine max |
C.06 |
|
glycoalkaloids |
D.29 |
|
grafting |
2.25 |
|
grain protein content |
1.13 |
|
grain quality |
D.14 |
|
grain yield |
2.57 |
|
grape |
B.03, B.38 |
|
grape cell cultures |
C.14 |
|
grapevine |
2.39, 2.61, A.16, B.06, B.20, B.21, B.39, D.39, D.40, D.41 |
|
grapevine berry development |
1.20 |
|
GTN |
4.13 |
|
GUS |
D.39 |
|
GWAS |
2.24, 2.47, 2.57 |
|
GxE interactions |
B.06 |
H |
|
Haematococcus pluvialis |
4.11 |
|
halophytes |
2.16 |
|
hda108 |
B.30 |
|
Heading date 1 |
D.17 |
|
Heat Shock Proteins |
2.42 |
|
Heat Shock Response |
2.43 |
|
heat stress |
2.41 |
|
heavy metals |
2.13 |
|
Helianthus annuus |
B.27 |
|
heterosis |
B.26 |
|
high-throughput sequencing |
D.33 |
|
high-value compounds |
4.04 |
|
histone acetylation/deacetylation |
B.30 |
|
Hordeum vulgare |
2.13 |
|
hormones |
A.09 |
|
host resistance |
2.59 |
|
Huanglongbing |
B.02 |
|
hybrid |
D.31 |
|
hydrogen peroxide |
1.24, A.11 |
|
hyperaccumulation |
A.05 |
|
hyperosmotic stress |
2.20 |
|
hypertolerance |
A.05 |
|
hypoxia |
2.12 |
I |
|
|
in vitro cell culture |
1.30 |
|
in vitro selection |
C.22 |
|
inbred lines |
D.32 |
|
inflorescence |
4.25 |
|
insertional mutagenesis |
4.14, 4.26 |
|
integral membrane proteins |
C.07 |
|
intracellular transport |
B.01 |
|
introgression line |
1.07, 4.22 |
|
ion flux |
A.12 |
|
ion transporters |
A.09 |
|
ionome |
4.16 |
|
ionomic |
A.04, B.34 |
|
iron |
1.04 |
|
iron deficiency |
2.10, A.04, B.35 |
|
isoforms |
2.18 |
|
isoprenoids |
1.05, 1.22 |
|
Italian rice |
A.09 |
J |
|
juvenile |
4.18 |
K |
|
karyotype |
D.51 |
|
KAT1 channel |
C.16 |
L |
|
landrace |
2.09, D.13, D.19, D.27 |
|
landrace distinctiveness |
D.23 |
|
landscape genomics |
D.12 |
|
laurel |
2.28 |
|
leaf |
2.29 |
|
leaf hydraulic conductance |
2.21 |
|
leaf shrinkage |
2.21 |
|
leaf water flow |
2.19 |
|
lectins |
1.26 |
|
legumes |
D.22 |
|
light absorption |
C.01 |
|
light acclimation |
4.05, C.20 |
|
light dissipation |
C.01 |
|
light harvesting complexes |
2.36 |
|
light sheet microscopy |
A.03 |
|
light use efficiency |
4.15 |
|
lignin |
4.24, 4.27 |
|
ligno-cellulosic biomass |
4.21 |
|
linkage |
D.04 |
|
linkage disequilibrium |
2.57, D.23, D.34 |
|
linkage mapping |
B.22 |
|
Linum usitatissimum |
1.30 |
|
lipid accumulation |
4.05 |
|
lipid droplet |
C.05 |
|
lipid metabolism |
C.05 |
|
lipid production |
4.12 |
|
lncRNAs |
B.31 |
|
local varieties |
D.30 |
|
long non-coding RNA |
B.33 |
|
LOV domain |
C.15 |
|
lpa |
1.27, 1.29 |
|
lpa mutants |
1.04 |
|
LTR-retrotransposon |
B.27 |
M |
|
maize |
1.02, 2.26, 2.27, B.30, D.19, D.20 |
|
mapping-by-sequencing |
D.07 |
|
marginal lands |
4.21 |
|
marker development |
B.18 |
|
Marker-Assisted Breeding (MAB) |
D.08, D.32 |
|
Marker-Assisted Selection |
D.31 |
|
markers |
D.04 |
|
mass spectrometry |
A.06 |
|
Medicago truncatula |
1.29, A.14 |
|
meta-analysis |
B.26 |
|
metabolic profiling |
B.15 |
|
metabolomic |
4.05, B.16 |
|
metal ions |
1.28 |
|
meta-QTL analysis |
1.14 |
|
microalgae |
4.04, 4.10, 4.15, 4.16 |
|
microarray |
B.15 |
|
micronutrient homeostasis |
A.04 |
|
microsatellite |
D.30, D.32, D.33, D.50 |
|
microsporogenesis |
D.28 |
|
microvine model system |
1.22 |
|
mineral bioavailability |
1.04 |
|
minor antenna protein |
2.37 |
|
miRNA |
2.05, 2.48, B.20 |
|
mitochondria |
C.09 |
|
Mixed Linear Model (MLM) |
D.47 |
|
MLO |
2.03, 2.58, B.03 |
|
modifier |
D.20 |
|
molecular adaptation |
C.17 |
|
molecular chaperones |
C.11 |
|
molecular marker |
D.08, D.09, D.19, D.41, D.46 |
|
molybdenum |
A.04 |
|
mRNA |
B.33 |
|
MSAP |
2.10 |
|
MtN5 |
A.14 |
|
multidisciplinary approach |
D.35 |
|
multiplex |
D.04 |
|
multipurpose crop |
4.23 |
|
mutagenesis |
2.16 |
|
mutant screening |
2.16 |
|
MYB |
2.40, B.05 |
|
mycorrhiza |
2.55 |
|
mycorrhiza interactions |
2.54 |
N |
|
N fixation |
A.13 |
|
Na+ translocation |
2.12 |
|
NAC-domain transcription factor |
B.39 |
|
Nannochloropsis |
4.05, 4.14 |
|
natural epigenetic variation |
B.29 |
|
natural rubber |
4.26 |
|
negative feedback |
C.04 |
|
nested association mapping |
D.12 |
|
Next Generation Sequencing |
2.52, 2.62, 4.24, B.24, B.28, B.35 |
|
Nicotiana benthamiana |
4.13 |
|
Nicotiana tabacum |
4.06, 4.27, C.18 |
|
nitric oxide |
C.03 |
|
nitrogen |
A.01, A.12 |
|
nitrogen metabolism |
1.13 |
|
nitrogen stress conditions |
2.05 |
|
nitrosoglutathione |
C.03 |
|
nitrosylation |
C.03, C.24 |
|
nodulation |
A.13 |
|
non host resistance |
2.59 |
|
non-chimeric mutants |
D.38 |
|
non-coding RNA |
B.37 |
|
nor |
B.39 |
|
NPQ |
2.37 |
|
nuclear beta-amylases |
A.06 |
|
nuclear transformation |
1.21 |
|
nucleus |
C.02 |
|
nutraceutical compounds |
A.18 |
O |
|
Ogg1 |
2.34 |
|
OG-machine |
4.08 |
|
Oidium tuckeri |
D.43 |
|
old varieties |
D.26 |
|
Olea europaea L. |
D.36, D.37 |
|
oligogalacturonides |
4.08 |
|
olive germplasm |
D.35 |
|
open pollinated population |
D.23 |
|
open pollinated varieties |
D.19 |
|
open pond culture systems |
4.09 |
|
optogenetic |
C.15 |
|
orthologs |
B.04 |
|
orthology |
1.12 |
|
Oryza sativa |
2.12, B.07, D.03, D.17 |
|
OsbZIP transcription factors |
A.17 |
|
osmotic stress |
2.11, 2.15 |
|
oxidative stress |
2.13, 2.34, 2.35, 2.46, C.21, C.23, C.24 |
P |
|
p23-chaperone |
A.02 |
|
PAL |
4.24 |
|
PAMP |
2.45 |
|
paralogs |
B.04 |
|
parentage analysis |
D.42 |
|
PCNAs |
2.34 |
|
pectin methyl esterase |
1.20, 2.50 |
|
pectin methyl esterase inhibitors |
1.20 |
|
Pedigree Based Analysis |
B.25 |
|
pedigree genotyping |
D.43 |
|
pepper |
D.05 |
|
Permeability Transition Pore (PTP) |
C.12 |
|
Petunia hybrida |
2.07 |
|
PG |
4.08 |
|
PGIP |
4.08 |
|
Phalaris spp. |
D.09 |
|
phaseolin |
C.04 |
|
Phaseolus vulgaris |
1.27 |
|
phenolic compounds |
1.16, B.17 |
|
phenolics |
D.44 |
|
phenomics |
D.05 |
|
phenotypic plasticity |
B.06 |
|
phenotyping |
D.37, D.43 |
|
phosphoregulation |
C.08 |
|
phosphorylation |
2.37, A.01, A.06 |
|
photoperiod |
B.07 |
|
photoperiodic flowering |
D.17 |
|
photoperiod-response genes |
D.15 |
|
photoprotection |
2.36, 4.15 |
|
photosynthesis |
4.05, 4.14, 4.15, C.01, C.02, C.20 |
|
Photosystem I |
2.36 |
|
Photosystem II |
C.18 |
|
phylogenetic analysis |
D.33 |
|
phylogenetic tree |
D.50 |
|
phytic acid |
1.04, 1.15, 1.26, 1.27, 1.29 |
|
phytoremediation |
4.10 |
|
phytosiderophores release |
2.10 |
|
PIN |
A.02 |
|
Pisum sativum |
C.12, C.14, C.19 |
|
plant biology |
A.03 |
|
plant breeding |
2.58 |
|
plant cell walls |
1.20 |
|
plant defense |
2.50 |
|
plant development |
2.05, 2.26 |
|
plant disease |
B.02, D.44 |
|
plant domestication |
B.27 |
|
plant evolution |
2.33 |
|
plant growth promotion |
A.16 |
|
plant heterologous expression |
4.07 |
|
plant hydraulics |
2.29 |
|
plant mitochondria |
C.12 |
|
plant roots |
A.20 |
|
plant stress response |
2.18 |
|
plant tolerance |
2.17 |
|
plant uncoupling protein |
2.20 |
|
plant vacuole |
C.07 |
|
plant virus |
1.34 |
|
plant yield |
A.21 |
|
plasma membrane Ca2+ ATPases |
C.08 |
|
plasma membrane depolarization |
C.06 |
|
Plasmopara viticola |
D.43, D.44 |
|
plastid |
1.11 |
|
plastomes |
C.17 |
|
plum biodiversity |
1.23 |
|
Plum Pox Virus |
2.62 |
|
polar auxin transport |
A.02 |
|
poliphenols |
1.23 |
|
pollen |
2.42 |
|
pollen development |
2.43 |
|
polymerase inhibitors |
4.28 |
|
polyploidization |
D.51 |
|
polyploidy |
D.28 |
|
poplar |
2.38 |
|
population |
D.37 |
|
population structure |
2.57, D.05, D.42 |
|
positional cloning |
D.10 |
|
positive selection |
C.17 |
|
post harvest dehydration |
B.16 |
|
powdery mildew |
2.03, 2.58, 2.59, B.03 |
|
priming |
1.18 |
|
proline biosynthesis |
2.18 |
|
promoter |
A.05 |
|
promoter analysis |
1.29, D.39 |
|
protein bodies |
C.11 |
|
protein body biogenesis |
C.10 |
|
protein evolution |
1.02 |
|
protein synthesis and accumulation |
1.02 |
|
protein traffic |
C.10 |
|
proteome profiling |
A.20 |
|
proteomics |
C.19 |
|
proton motive force |
C.01 |
|
Prunus persica (L.) Batsch |
2.56, B.17, D.47, D.48 |
|
Pseudomonas |
4.13 |
|
Pseudomonas syringae |
2.51 |
|
Pseudomonas syringae pv. tabaci |
2.49 |
|
PSII-LHCII megacomplex |
C.18 |
|
PSII-LHCII supercomplex |
C.18, C.19 |
|
Pyrus communis |
D.45 |
Q |
|
qPCR |
4.28, B.34 |
|
qRT-PCR |
2.48, 4.23 |
|
QTL analysis |
2.52, D.44 |
|
QTL mapping |
B.12 |
|
quality traits |
1.17, D.48 |
|
quantitative trait loci (QTL) |
1.12, 1.14, 2.62, 4.20, A.18, B.15, B.25, D.10, D.15 |
|
QUENCHER assay |
1.16 |
|
quercetin |
C.14 |
|
quiescience |
B.21 |
R |
|
R2R3-MYB |
2.39 |
|
Radicchio of Chioggia |
D.31 |
|
RADseq |
D.34 |
|
RdDM |
B.30 |
|
RealTime PCR |
B.20 |
|
redox |
C.06 |
|
redox potential |
1.24 |
|
redox regulation |
C.20, C.23 |
|
regulation |
C.02 |
|
regulatory complex |
2.40 |
|
renewable energy |
4.22 |
|
repetitive DNA |
B.27 |
|
resequencing |
B.09 |
|
resistance |
2.46, 2.58 |
|
resistance gene |
2.52, B.03, D.14 |
|
resistance loci |
2.47 |
|
resources |
B.08 |
|
reverse genetics |
B.24, B.36 |
|
rice |
1.17, 2.18, 2.22, 2.24, 2.37, 2.47, A.17, D.03, D.18 |
|
ripening |
B.38 |
|
rmr6 |
B.30 |
|
RNA-binding protein |
2.15 |
|
RNAi |
D.28 |
|
RNA-Seq |
1.17, 2.17, 4.03, A.19, B.02, B.09, B.13, B.14, B.20, B.21, D.18 |
|
RNA-Seq analysis |
2.44 |
|
RNA-Seq DNA methylation |
B.29 |
|
root |
2.29 |
|
root apoplastic barriers |
2.12 |
|
root architecture |
2.09, A.09 |
|
root biomass |
2.08 |
|
root development |
A.01 |
|
root diameter |
2.08 |
|
root growth |
A.02 |
|
root hairs |
C.13 |
|
root morphology |
B.22 |
|
root mutants |
D.07 |
|
root spread angle |
2.08 |
|
rootstock |
B.20, D.36 |
|
ROS |
2.45 |
|
ROS resistance |
4.19 |
|
RVA |
1.18 |
S |
|
saccharification |
4.06, 4.22 |
|
safeguard |
D.22 |
|
saffron |
1.25 |
|
salicylic acid |
A.11 |
|
salinity |
2.11 |
|
salt and drought stress |
2.18 |
|
salt stress |
2.12, B.35 |
|
salt stress tolerance |
A.09 |
|
SBCMV |
D.10 |
|
secondary metabolites |
1.19, 1.30, B.36 |
|
seed |
1.04 |
|
seed germination |
2.07, A.07 |
|
seed quality |
1.15, 2.31 |
|
seed size |
D.20 |
|
seed storage proteins |
C.10, C.11 |
|
seedling blight |
2.44 |
|
seipin |
C.05 |
|
selection markers |
4.09 |
|
sequencing |
D.41 |
|
sesquiterpene lactones |
B.18 |
|
sharka |
2.62 |
|
shoot apical meristem |
B.07 |
|
Sicily |
2.23 |
|
signaling |
A.13, C.02 |
|
Simple Sequence Repeat – SSR |
D.23 |
|
Single Nucleotide Polymorphism (SNP) |
B.23, B.25, D.10, D.16, D.27, D.41, D.42 |
|
single particle electron microscopy |
C.19 |
|
Sinorhizobium meliloti |
A.14 |
|
Sjögren’s Syndrome |
1.34 |
|
small Heat Shock Protein |
2.41 |
|
SNP markers |
D.06, D.13 |
|
soil biodiversity |
2.55 |
|
Solanaceae |
2.58 |
|
Solanum indicum |
D.29 |
|
Solanum lycopersicum genome annotation |
B.40 |
|
Solanum lycopersicum L. |
1.06, 1.09, D.25 |
|
Solanum melongena |
1.12, A.18, D.29 |
|
Solanum spp. |
1.09 |
|
Solanum tuberosum |
2.40, D.26, D.27 |
|
Somatic Homologous Recombination |
A.10 |
|
sorghum bicolor |
4.23 |
|
soybean |
2.44 |
|
SPIM |
A.03 |
|
SSR |
D.08, D.37, D.40 |
|
SSR markers |
D.26, D.31, D.45 |
|
starch |
B.19 |
|
starch metabolism |
B.02, C.23 |
|
state transition |
2.36 |
|
stilbene synthase |
2.39 |
|
stilbens |
1.06 |
|
STN8 kinase |
2.37 |
|
stomatal conductance |
2.06 |
|
stress |
2.39, 2.61 |
|
stress avoidance |
2.30 |
|
stress resilience |
2.24 |
|
stress tolerance |
2.16, 2.23, 2.30, 2.31, 2.53, D.14, D.25 |
|
strigolactones |
2.25 |
|
structural variation |
B.32 |
|
sub-lines |
1.07 |
|
sucrose synthase |
B.19 |
|
sugar sensing and signalling |
A.06 |
|
sugars |
1.23 |
|
sunflower |
B.24 |
|
sweet cherry |
1.24 |
|
symbiosis |
A.13, A.14, A.20 |
|
Synchrotron |
2.28 |
|
syntaxins |
2.59 |
T |
|
table grapevines |
D.38 |
|
Taraxacum kok-saghyz |
4.26 |
|
target identification |
2.48 |
|
TAXI-III |
2.04 |
|
TBP |
D.09 |
|
TCP |
A.07 |
|
Thalassiosira pseudonana |
4.12 |
|
therapy |
1.34 |
|
thermospermine |
A.08 |
|
thermostable enzymes |
4.07 |
|
thermotolerance |
2.41, 2.42 |
|
thiol-based regulation |
C.21 |
|
thylakoid membranes |
C.18, C.19 |
|
TILLING |
2.41, 2.42, B.24, D.06, D.25 |
|
tomato |
2.17, 2.25, 2.42, 2.53, 2.54, 4.22, A.12, B.13 |
|
tomato ecotype |
2.14 |
|
tomato traditional variety |
B.37 |
|
tonoplast |
C.07 |
|
tospovirus |
2.54 |
|
traceability |
D.41 |
|
traits |
D.34 |
|
transcript features |
B.33 |
|
transcription factor |
1.06, A.21 |
|
transcriptional profile |
1.03 |
|
transcriptome |
2.22, 4.03, B.18, B.37 |
|
transcriptome analysis |
A.14 |
|
transcriptomic |
4.26, B.05, B.06, B.16, B.31 |
|
transformation |
B.39 |
|
transgenerational memory |
A.10 |
|
transgenesis |
2.49 |
|
transgenic plants |
C.22 |
|
transgenic poplar |
2.06 |
|
transient expression |
1.33, 4.13 |
|
translational control |
2.15 |
|
transplastomic plants |
4.06, C.04, C.22 |
|
transport |
A.01 |
|
Trichoderma harzianum T22 |
B.13 |
|
Triticum aestivum |
1.18, 2.50, D.14 |
|
Triticum durum |
2.05, 2.08 |
|
Triticum urartu |
D.12 |
|
trnL |
D.09 |
|
truffle production |
2.55 |
|
two-electrode voltage-clamp |
C.06 |
|
Ty1antiros |
1.31 |
|
Type 1 Diabetes |
1.34 |
U |
|
unreduced gametes |
D.51 |
|
untargeted metabolomics |
B.11 |
|
UV-B stress |
2.38 |
V |
|
vacuolar acidification |
B.05 |
|
Vacuolar Metal Transporter |
A.05 |
|
vacuoles |
1.02 |
|
variations |
B.09 |
|
varieties |
D.08 |
|
vegetative and reproductive stages |
A.15 |
|
vernalization-response genes |
D.15 |
|
Versatile Peroxidase |
4.27 |
|
Vicia faba |
A.11 |
|
Viral K+ channel Kcv |
C.15 |
|
virus |
B.10 |
|
virus induced gene silencing |
B.36 |
|
Vitamin C |
1.03, 1.24 |
|
vitamins |
1.23 |
|
Vitis spp. |
D.43, D.44 |
|
Vitis vinifera L. |
1.20, B.05, B.15, B.16, B.32, D.42 |
|
Volatile Organic Compounds (VOCs) |
1.19 |
W |
|
|
water affinity |
2.19 |
|
water relation |
2.23, 2.29, 2.48 |
|
water stress |
2.26, 2.28, 4.03 |
|
wheat |
1.14 |
|
wheat mutant |
2.19 |
|
white cotyledons |
1.21 |
|
white truffle |
2.55 |
|
whole-genome resequencing |
D.03 |
|
wild relatives |
2.23 |
|
willow |
4.01 |
|
WRKY |
2.39 |
X |
|
XIP-I |
2.04 |
|
X-ray micro-tomography |
2.28 |
|
xylanase |
2.04 |
|
xylem cavitation |
2.21 |
|
xylem conduits |
2.28 |
|
xylem differentiation |
A.08 |
Y |
|
yellow pigments |
D.06 |
|
yield |
B.26 |
Z |
|
Zea mays L. |
2.09, 2.31, 2.46, 4.17, 4.18, A.19, B.11, B.12, B.26, B.29 |
|
ZmMYB94 |
2.27 |
|
zucchini protection |
B.14 |
|