|
|
(1,3;1,4)-beta-D-Glucan |
3.06 |
|
2n pollen |
2.12 |
|
7B-1 mutant |
2.58 |
|
9K SNP array |
2.18 |
A |
|
abiotic stress |
3.01 |
|
abiotic genes |
1.09 |
|
adult phase |
2.38 |
|
Aegilops |
2.14 |
|
aflatoxins |
5.17 |
|
AFLP |
2.19 |
|
Aglianico |
2.55 |
|
Agrobacterium tumefaciens |
6.16 |
|
agrobiodiversity |
2.08, 3.04 |
|
agro-ecology |
2.08 |
|
agronomic traits |
2.11 |
|
Alachlor |
6.08 |
|
Algerian olive germplasm |
2.30 |
|
alleles for quality |
3.07 |
|
allelic diversity |
3.05 |
|
allergens |
1.37, 3.27 |
|
almond |
2.44, 2.56 |
|
amino acids |
3.08 |
|
amygdalin |
2.56 |
|
ancient varieties |
3.13 |
|
annotation |
1.41, 5.28 |
|
anther culture |
2.29 |
|
anthocyanin |
2.17, 2.24 |
|
antioxidant |
2.45, 4.10, 4.11 |
|
antioxidant activity |
3.17, 4.12 |
|
anti-tumoral diterpenes |
6.18 |
|
antixenosis |
5.12 |
|
apocarotenoids |
3.03 |
|
Arabidopsis thaliana |
1.12, 2.12, 2.47, 6.01, 6.02 |
|
arbuscular mycorrhizal fungi |
4.16 |
|
artichoke |
3.28 |
|
artificial inoculation |
5.17, 5.21 |
|
artificial microRNA |
6.14 |
|
Arundo donax |
2.22, 2.50, 4.06 |
|
ascorbic acid (AsA) |
1.16, 1.17, 2.61, 4.11 |
|
ASM |
1.13 |
|
Asparagus officinalis L. |
4.12 |
|
Aspergillus flavus |
5.17 |
|
association mapping |
2.04, 2.05, 2.13, 2.24, 3.12 |
|
association study |
1.18 |
|
Asteraceae |
1.06 |
|
auxin |
6.04, 6.10 |
|
auxin biosynthesis |
2.20 |
B |
|
barley |
1.01 |
|
barley varieties |
1.29 |
|
binary traits |
4.15 |
|
biodiversity |
2.10 |
|
bioenergy |
2.50 |
|
biofortification |
3.16 |
|
bioinformatics |
6.14 |
|
biomass |
2.62 |
|
biotic stress |
4.11 |
|
bitterness |
2.56 |
|
bolting tendency |
1.43 |
|
brachytic mutants |
6.04 |
|
Brassicaceae |
6.03 |
|
bread wheat |
2.26 |
|
breeding |
3.01, 6.03, S.04 |
|
breeding for resistance |
5.11 |
|
browning |
3.22 |
C |
|
cadmium |
3.23 |
|
Camelina sativa |
6.03 |
|
cAMP |
5.15 |
|
candidate gene |
5.06 |
|
capillary electrophoresis |
3.10 |
|
CAPS |
5.09 |
|
CAPS markers |
2.61 |
|
Capsicum annuum L. |
2.41, 3.25, 4.10, 6.16 |
|
carotenoid |
1.15, 2.02, 2.21, 3.15 |
|
carotenoid genes |
2.36 |
|
CCDs |
3.03 |
|
cell expansion |
6.10 |
|
cell wall |
5.25 |
|
cellulolytic enzymes |
6.17 |
|
cGMP |
5.15 |
|
cherry tomato |
2.23 |
|
Chicorium intybus |
3.05, 4.09 |
|
chitin signaling |
5.04 |
|
chloroplast |
2.62, 6.07 |
|
chloroplast DNA |
1.19 |
|
chloroplast markers |
3.09 |
|
Chromatin Immunoprecipitation (ChIP) |
2.28, 1.31 |
|
ChIP-sequencing (ChIP-seq) |
1.31 |
|
chromatin modifications |
1.27 |
|
chromosome 5A |
1.04 |
|
Cicer arietinum |
2.31 |
|
Cichorium endivia |
1.12, 1.22 |
|
circadian clock |
1.39 |
|
Citrus |
1.02 |
|
clones collection |
2.22 |
|
cloning |
3.25 |
|
cloning-by-sequencing |
1.01 |
|
coevolution |
5.27 |
|
cold stress |
1.35, 1.38 |
|
common bean |
2.07 |
|
complex traits |
2.03 |
|
compost-tea |
2.48 |
|
consensus map |
2.05 |
|
corn flour |
2.54 |
|
CRISPR/Cas |
S.02 |
|
crocin |
3.03 |
|
Crocus sativus |
2.19 |
|
crop improvement |
S.03 |
|
crop nutrition |
4.01 |
|
Cucumis melo |
2.27 |
|
Cucurbita pepo |
5.10 |
|
Cynara cardunculus |
1.06, 1.21, 2.25 |
|
Cynara cardunculus var. scolymus L. |
3.17 |
|
cynaropicrin |
2.25 |
|
cytokinin metabolism |
1.22 |
|
D
|
|
data network |
2.41 |
|
database |
1.21, 1.41 |
|
de novo |
1.42 |
|
de novo assembly |
1.02, 3.05 |
|
de novo sequencing |
1.09 |
|
deep-sequencing |
1.29 |
|
defense response |
5.08 |
|
Dendrobium |
6.13 |
|
differential gene expression |
1.32 |
|
differentially expressed genes |
1.25 |
|
digestate |
4.05 |
|
dihydrofolate reductase |
6.02 |
|
disabling mutations |
S.04 |
|
diseases |
5.09 |
|
DNA damage |
6.11 |
|
DNA double-strand break (DSB) |
S.03 |
|
DNA methylation |
1.17 |
|
DNA microsatellites |
3.11 |
|
domestication |
1.11, 2.07 |
|
draft-genome |
1.09 |
|
drought |
1.17, 6.09 |
|
drought resistance |
3.12, 6.06 |
|
drought stress |
1.10, 2.50, 6.07 |
|
DSB repair |
S.02 |
|
durable resistance |
5.03 |
|
durum wheat (Triticum durum Desf.) |
2.09, 2.16, 2.17, 2.26, 2.40, 2.60, 3.06, 3.07, 3.19, 5.06, 6.06 |
E |
|
effective number of codons |
2.39 |
|
eggplant |
1.20, 3.26 |
|
elevated CO2 |
1.30 |
|
Emilia Romagna |
2.10 |
|
energy crop |
2.22 |
|
environmental stress |
1.27 |
|
enzyme activity |
4.03 |
|
epigenetic variability |
2.19 |
|
epigenetic variation |
2.35 |
|
epigenetics |
2.15, 2.47 |
|
epigenome |
1.14 |
|
Eragrostis tef |
3.24 |
|
Erysiphe necator |
5.04 |
|
Ethiopia |
3.04 |
|
exopolysaccharides |
1.34 |
|
expression analysis |
2.53 |
|
expression pattern |
3.25 |
F |
|
Fagopyrum esculentum |
2.32 |
|
Fagopyrum tataricum |
2.32 |
|
family farming |
3.04 |
|
farming systems |
2.08 |
|
fasciated |
2.53 |
|
fennel |
2.34 |
|
filamentous fingi |
5.02 |
|
fine mapping |
2.56, 5.23 |
|
fingerprinting |
2.10, 5.22 |
|
flag leaf |
1.30 |
|
flavonoids |
4.07 |
|
flow cytometry |
6.13 |
|
flowering |
1.39, 2.15 |
|
flowering time |
1.12, 2.03, 2.40, 2.42 |
|
Fol |
2.37 |
|
food contaminants |
3.07 |
|
food safety |
3.23 |
|
food-grade sorghum |
4.14 |
|
fruit crops |
1.03 |
|
fruit quality |
2.18, 2.57, 2.61 |
|
fumonisin |
1.26 |
|
functional category enrichment |
1.32 |
|
functional genomics |
6.14 |
|
fungal pathogen |
5.21 |
|
fungal strain dynamics |
5.22 |
|
Fusarium |
5.19 |
|
Fusarium culmorum |
5.18 |
|
Fusarium graminearum |
5.18, 5.24 |
|
Fusarium head blight |
5.23 |
|
Fusarium resistence |
5.06 |
|
Fusarium verticillioides |
1.26, 5.20, 5.22 |
|
fw3.2 |
2.53 |
G |
|
GBS |
1.06, 1.20 |
|
gene cluster |
2.37 |
|
gene co-expression network |
2.07 |
|
gene expression |
2.46, 2.49, 3.21, 4.13 |
|
gene promoters |
6.02 |
|
gene silencing |
6.16 |
|
gene structure |
2.06 |
|
gene technology |
S.02 |
|
Gene-based SNP markers |
2.05 |
|
genetic diversity |
2.13, 2.22, 2.26, 2.31, 2.43, 2.45, 2.51, 4.01 |
|
genetic linkage map |
5.06 |
|
genetic mapping |
1.36 |
|
genetic purity |
2.27 |
|
genetic resources |
2.02, 3.15, 5.12 |
|
genetic screening |
5.16 |
|
genetic variability |
2.19, 2.30, 3.06 |
|
genetic variation |
2.09 |
|
genome |
1.23 |
|
genome doubling |
2.46 |
|
genome sequence |
1.01 |
|
genome zipper |
1.04 |
|
genomic predictions |
4.15 |
|
genomics |
1.06, 3.01 |
|
genotyping |
2.13 |
|
Genotyping-by-Sequencing (GBS) |
1.03, 1.26 |
|
germplasm |
2.10, 2.51, 5.09, 5.17 |
|
germplasm resources |
2.11 |
|
giant reed |
2.62 |
|
GISH |
2.62 |
|
globosa |
2.58 |
|
glucosinolates |
6.03 |
|
glutamate synthase |
4.03 |
|
glutamine synthetase |
4.03 |
|
glutathione S-transferase |
6.08 |
|
glycosidase inhibitors |
5.25 |
|
grain number per spikelet |
2.60 |
|
grain yield |
2.60 |
|
grapevine |
1.05, 5.07, 6.09 |
|
grapevine rootstocks |
1.31 |
|
green factories |
6.17 |
|
green microalgae |
6.12 |
|
GS FLX 454 platform |
5.08 |
|
GWAS |
3.04 |
H |
|
hairy roots |
6.18 |
|
haploids |
2.29 |
|
hda108 |
2.28 |
|
HD-ZIP III |
6.01 |
|
herbivores resistance |
5.13 |
|
hGAD65 |
6.15 |
|
High Resolution Melting |
3.10 |
|
high-PIC SSRs |
2.34 |
|
high-throughput genotyping |
1.03 |
|
high-throughput phenotyping |
6.06 |
|
histone acetylation/deacetylation |
2.28 |
|
histone modifications |
1.31 |
|
histone post-translational modifications |
1.40 |
|
HMM |
5.28 |
|
homologous recombination |
S.02 |
|
homologue genes |
1.43 |
|
Hordeum vulgare (cv. Morex) |
2.59 |
|
Hordeum vulgare L. |
5.27 |
|
hormones |
1.33 |
|
host adaptation |
5.02 |
|
HPLC |
2.51 |
|
HRM |
5.10 |
|
HSP101 promoter |
3.19 |
|
humic acid |
2.48 |
|
hydrolytic and oxidative degradation level |
3.11 |
|
hypersensitive response |
5.16 |
I |
|
|
IAA |
2.20 |
|
in vitro selection |
5.11 |
|
inbred lines |
2.34 |
|
intergenic sequences |
2.39 |
|
introgression lines (ILs) |
2.57, 2.61 |
|
intron gain/loss |
2.06 |
|
introns |
2.44 |
|
ionome |
3.23 |
|
ionome analysis |
6.11 |
|
ionomic-transcriptomic data integration |
4.04 |
|
iron uptake |
4.08 |
|
isogenic lines |
5.10 |
|
Italian cultivars |
1.24 |
J |
|
Jerusalem artichoke |
5.11 |
|
juvenile phase |
2.38 |
K |
|
Kalanchoe x houghtonii |
4.06 |
|
KEGG |
4.06 |
|
kiwifruit |
1.13 |
L |
|
lactic acid bacteria |
1.34 |
|
landraces |
2.21, 2.26, 2.32, 2.43, 2.54, 3.08, 3.17 |
|
landscap projects |
6.11 |
|
landscape ecology |
2.08 |
|
leaf development |
1.10 |
|
leafy crops |
1.12, 1.22 |
|
lignin degradation |
1.08 |
|
linkage disequilibrium |
2.04, 2.24 |
|
linkage map |
2.16 |
|
lncRNAs |
1.27 |
|
local adaptation |
5.27 |
|
local populations |
3.02 |
|
local varieties |
3.09 |
|
long non-coding RNA |
1.41 |
|
long shelf-life |
1.14, 2.23 |
|
loss-of-function |
S.04 |
|
low temperature- tolerance |
1.29 |
|
lupeol |
3.25 |
|
Lupinus albus |
4.07 |
|
LysM-RLK |
5.04 |
M |
|
M13-tailed AFLPs |
2.34 |
|
macronutrients |
4.14 |
|
Magnaporthe oryzae |
5.03 |
|
maize |
1.28, 2.21, 2.35, 4.02, 6.06 |
|
Mal d genes |
1.37, 3.27 |
|
male sterility |
2.58 |
|
Malus domestica |
1.37, 3.13, 3.27 |
|
mapping |
5.03 |
|
marginal lands |
2.50 |
|
marker-assisted breeding |
1.23, 2.33, 2.34 |
|
Mediterranean area |
4.14 |
|
Mediterranean species |
6.11 |
|
meganucleases |
S.02 |
|
meiosis |
1.40, 2.47, 2.52 |
|
melon |
1.11 |
|
metabolic engineering |
6.18 |
|
metabolic pathway |
1.16 |
|
metabolite analysis |
3.22 |
|
metabolome |
1.07, 1.22 |
|
metabolomic |
1.33, 3.08, 4.16 |
|
metal ions |
3.07 |
|
metal transporters |
3.23 |
|
microarray |
4.02 |
|
microarray analysis |
4.08 |
|
microbial community |
4.05 |
|
micronutrients |
4.14 |
|
micropropagation |
2.22 |
|
microRNA |
5.05 |
|
microsatellite |
1.21, 2.32, 3.10 |
|
microsatellite markers (SSR) |
2.45, 2.51 |
|
microspore culture |
2.29 |
|
microsporogenesis |
2.12 |
|
milling fractions |
3.02 |
|
mineral components |
3.02 |
|
mineral elements |
4.09 |
|
mineral profile |
4.14 |
|
miRNA |
1.10, 1.17, 1.29, 1.33 |
|
MISA |
1.21 |
|
molecular markers |
1.19, 2.11, 2.31 |
|
morpho-anatomical modifications |
2.46 |
|
morpho-physiological traits |
3.14 |
|
mRNA-Seq |
1.31, 1.32 |
|
MRP |
4.13 |
|
MS-AFLP |
2.19 |
|
MTP |
1.04 |
|
multiparental population |
2.03, 2.60 |
|
multiplexing |
2.27 |
|
musts |
3.10 |
|
mutational bias |
2.39 |
|
MYB transcription factors |
3.26 |
|
mycotoxin |
5.18 |
N |
|
neighbor map |
1.04, 5.23 |
|
Next Generation Sequencing (NGS) |
1.03, 1.06, 1.07, 1.08, 1.10, 1.19, 1.20, 1.36, 1.39, 2.48, 3.24, 4.05, 5.05, 5.07, 5.13 |
|
Nicotiana tabacum |
6.08, 6.15 |
|
nitric oxide |
5.16 |
|
NO3- induction |
4.02 |
|
NUE |
4.02 |
|
nutrient deficiency |
4.07 |
O |
|
oil DNA tracking |
3.09 |
|
Olea europaea L. |
1.35, 2.30 |
|
olive oil |
3.09 |
|
open pollinated varieties |
2.21 |
|
organoleptic quality |
1.07 |
|
orphan crop |
3.24 |
|
orthologs |
2.37 |
|
Oryza sativa |
1.24 |
|
osmotic stress |
1.24 |
P |
|
PAHs |
6.12 |
|
paired-end |
1.11, 1.42 |
|
PDO and traditional food |
3.11 |
|
peach genome |
2.18 |
|
Pearl millet |
3.16 |
|
pepper |
2.51, 5.09 |
|
pepper ecotypes |
4.10 |
|
PGPR |
2.48 |
|
Phalenopsis |
6.13 |
|
pharmacological properties |
3.25 |
|
Phaseolus vulgaris |
2.43, 4.13 |
|
phenantrene catabolism |
6.12 |
|
phenolic acids |
2.09 |
|
phenolic compounds |
2.61 |
|
phenols |
2.45 |
|
phenomics |
3.23 |
|
phenotypic description |
2.59 |
|
phenotyping |
2.02, 2.13, 3.20, 5.19 |
|
phenylpropanoid pathway |
2.55 |
|
phenylpropanoids |
3.26 |
|
phlobaphenes |
2.21 |
|
photoperiod |
2.40 |
|
photosynthesis |
1.30 |
|
phylogenetic analysis |
2.14 |
|
phylogenetic relationship |
2.37 |
|
physical map |
1.01, 1.04 |
|
phythoene desaturase |
6.16 |
|
phytic acid |
3.16, 4.13 |
|
phytoplasma |
5.07 |
|
phytosiderophores |
4.08 |
|
Pisum sativum spp. arvense L. |
3.14 |
|
plant defence |
5.14 |
|
plant development |
2.28 |
|
plant disease |
5.11, 5.19, 5.22 |
|
plant disease resistance |
5.16 |
|
plant meristems |
6.02 |
|
plant nutrition |
3.17, 4.09 |
|
plant resistance genes |
5.20 |
|
plant secondary metabolites |
2.25 |
|
plant signalling transduction |
5.15 |
|
plant virus infection |
5.02 |
|
plantation age |
4.12 |
|
plant-growth promoting rhizobacteria |
4.16 |
|
plant-virus interactions |
5.05 |
|
plastid transformation |
6.17 |
|
polyphenols |
3.28, 4.11 |
|
polyploidization FISHIS |
6.13 |
|
polyploidy |
2.12, 2.62 |
|
pooling |
S.04 |
|
poppy anemone |
5.08 |
|
population genetics |
2.54, 3.14 |
|
population structure |
2.04 |
|
post-harvest withering |
2.23 |
|
potato |
2.46 |
|
powdery mildew |
5.26 |
|
precise genome engineering |
S.03 |
|
prediction |
5.28 |
|
PRGdb |
5.28 |
|
probiotic |
1.34 |
|
protein-protein interaction |
5.14 |
|
proteomic analysis |
5.24, 6.12 |
|
proteomics |
6.07 |
|
Pseudomonas putida |
2.48 |
|
Pseudomonas syringae pv. actinidiae |
1.13 |
|
PTI |
5.04 |
|
Punica granatum |
2.45 |
|
Pyrenophora teres |
5.27 |
|
Pyrus communis L. |
2.10 |
Q |
|
qRT-PCR |
3.22 |
|
QTL |
2.18, 2.40, 3.12, 5.19 |
|
QTL analysis |
1.36, 2.60 |
|
QTL cluster |
2.42 |
|
QTL mapping |
1.26, 2.03 |
|
quality |
3.08, 3.15 |
|
quality parameters |
5.24 |
|
quality traits |
1.25 |
R |
|
radicchio of Chioggia |
1.23, 2.33 |
|
RAD-sequencing |
1.20, 1.43 |
|
rare alleles |
S.04 |
|
RdDM |
1.28 |
|
Real Time PCR |
1.37, 3.27, 4.03 |
|
reciprocal translocation |
2.52 |
|
recombinant protein |
6.15 |
|
recombination |
1.40 |
|
REMAP |
2.55 |
|
resequencing |
1.42 |
|
resistance |
6.09 |
|
resistance gene |
5.26 |
|
R-genes |
1.09, 5.08, 5.28 |
|
rhizosphere |
1.33, 4.07 |
|
rice |
5.03 |
|
rice seeds |
1.25 |
|
ripening |
1.05, 2.23 |
|
RNA silencing |
5.05 |
|
RNAi |
2.12, 2.47 |
|
RNA sequencing |
1.13, 1.16, 1.24, 1.25, 1.28, 1.30, 1.33, 1.35, 1.37, 1.38, 2.07, 2.23, 2.35, 2.57, 3.21, 3.27, 5.03, 5.10, 5.13, 5.20, 5.21 |
|
rocket salad |
2.11 |
|
root exudates |
4.07 |
|
root metabolism |
4.16 |
|
root mutant collection |
2.59 |
|
root system architecture |
3.12 |
|
root vigor |
4.15 |
|
roots |
6.04 |
|
rootstocks |
6.09 |
|
ROS |
6.10 |
|
RRBS-seq |
2.35 |
S |
|
saffron |
3.03 |
|
salinity |
2.41 |
|
salt stress |
2.50 |
|
salt stress tolerance |
2.14 |
|
Salvia sclarea |
6.18 |
|
San Marzano |
3.21 |
|
SAR |
1.13 |
|
seed color |
2.17 |
|
seed content |
1.32 |
|
seed development |
2.20 |
|
seed morphology |
2.16 |
|
selection |
3.01 |
|
self-incompatibility |
2.44 |
|
sequence capture |
1.15 |
|
sesquiterpene lactones |
2.25 |
|
signalling |
5.16 |
|
Single Nucleotide Polymorphism (SNP) |
1.03, 1.11, 1.18, 1.42, 1.43, 5.06 |
|
siRNAs |
1.28 |
|
small Heat Shock Protein |
3.18 |
|
small RNA sequencing |
1.28 |
|
SNP genotyping |
2.43 |
|
SNP markers |
2.16, 2.17, 2.36, 2.52, 2.56, 3.09 |
|
SNP-BSA-based mapping |
2.59 |
|
soil amendment |
4.05 |
|
soil microorganisms |
1.08 |
|
soilless |
2.41 |
|
Solanaceae |
3.26 |
|
Solanum |
1.17, 2.46 |
|
S. habrochaites LA1777 |
2.57 |
|
Solanum lycopersicum L. |
2.02, 2.49, 2.58, 3.15, 5.05, 5.12, 6.14 |
|
Solanum melongena |
2.24, 3.22 |
|
Solanum pennellii introgression lines |
4.04 |
|
somatic mutations |
1.02 |
|
SOS genes |
2.14 |
|
S-RNase |
2.44 |
|
SSR |
1.21, 2.26, 2.27, 2.55, 3.14, 5.09 |
|
SSR markers |
2.30, 2.33, 2.54, 3.13 |
|
stem-loop qRT-PCR |
1.29 |
|
storage proteins |
3.16 |
|
Strategy II |
4.08 |
|
stress resistance |
1.09 |
|
stress response |
3.18 |
|
stress tolerance |
6.08 |
|
structural variants |
1.02 |
|
structural variation |
1.11, 1.42 |
|
sugar beet |
1.38, 4.15 |
|
sun |
2.53 |
|
sunflower |
1.39 |
|
superior alleles |
1.15 |
|
synteny |
2.05 |
|
synthetic variety |
3.20 |
|
systemin |
5.14 |
|
Systems Biology |
2.41 |
T |
|
table olives |
3.11 |
|
TALE transcription factors |
1.12 |
|
tannins |
3.20 |
|
Targeted Re-sequencing |
1.15 |
|
TdHSP101 |
3.19 |
|
tetraploid wheat |
2.04, 2.09, 2.36 |
|
thermospermine |
6.01 |
|
thermotolerance |
3.18, 3.19 |
|
thymidylate synthase |
6.02 |
|
tilling |
1.39 |
|
tobacco |
6.17 |
|
tomato |
1.07, 1.18, 1.19, 2.47, 2.57, 2.58, 3.08, 6.07 |
|
tomato breeding |
1.15 |
|
tomato fruit ionome |
4.04 |
|
tomato leafminer |
2.02, 5.12 |
|
tomato traditional variety |
1.14 |
|
ToMV |
2.37 |
|
traceability |
3.11 |
|
transcription factors |
1.38, 3.28 |
|
transcriptional regulation |
6.01 |
|
transcriptome |
1.05, 1.07, 1.22, 3.05, 5.13, 6.09 |
|
transcriptome analysis |
1.27 |
|
transciptome diversity |
2.07 |
|
transcriptome sequencing |
4.06 |
|
transgene pyramiding |
5.25 |
|
transgenic plant |
5.24, 6.15 |
|
translational selection |
2.39 |
|
Trichoderma longibrachiatum |
2.49 |
|
Triticum |
2.14 |
|
Triticum aestivum |
2.13, 5.19, 5.23 |
|
Triticum durum Desf. |
1.30, 2.05, 3.12, 3.18, 4.16 |
|
Triticum turgidum |
5.26 |
|
Triticum turgidum subsp. durum |
3.02 |
|
twinning with Canada |
5.21 |
|
two-way pseudo-testcross |
1.36 |
U |
|
urban pollution |
6.11 |
|
UV-B |
6.10 |
|
UVR8 |
6.10 |
V |
|
variety identification |
2.27 |
|
vascular development |
6.01 |
|
vernalization |
2.40 |
|
Virus-Induced Gene Silencing (VIGS) |
2.53, 5.02, 6.14 |
|
Vicia faba L. |
3.20 |
|
Vitis vinifera |
1.32, 2.55, 3.10 |
W |
|
|
water stress |
2.49 |
|
water use efficiency |
6.06 |
|
waxiness |
2.38 |
|
wheat |
2.29, 3.01, 3.04, 4.01, 4.03, 5.24 |
|
wheat defence |
5.25 |
|
whole transcriptome |
1.10 |
|
whole transcriptome assembly |
3.24 |
|
wild accessions |
2.43 |
|
wild wheats |
2.09 |
|
wine |
1.34 |
Y |
|
Yellow pigments |
2.36 |
|
yield |
2.42 |
|
Yucca |
2.20 |
Z |
|
Zea mays |
1.26, 1.27, 2.03, 2.15, 2.20, 2.28, 2.38, 4.08, 5.17, 5.20, 5.21, 5.22, 6.04 |
|
Zucchini yellow mosaic virus |
5.10 |
|