|
5A chromosome |
9.05 |
A |
|
ABA |
8.21 |
|
ABCG genes |
7.28 |
|
abiotic stress |
8.06, 8.07, 8.09, 8.17, 8.19, 8.20 |
|
abscisic acid |
7.04 |
|
accessions |
5.08 |
|
adaptation |
3.04, 5.28 |
|
aerobic soil |
5.48 |
|
aflatoxins |
1.12 |
|
AFLP |
1.06, 5.12, 5.17 |
|
Aft/Aft atv/atv |
7.07 |
|
AGC protein kinase |
8.17 |
|
agricultural food chain |
9.01 |
|
Agrobacterium tumefaciens |
1.21 |
|
alfalfa |
3.07, 3.19 |
|
alien gene transfer |
5.03 |
|
alloplasmic line |
3.06 |
|
alternative splicing |
3.08 |
|
amiprophos-methyl |
1.22 |
|
ancestors |
5.11 |
|
anthocyanin |
1.18, 3.26, 7.07 |
|
anthocyanin synthase |
3.22 |
|
anthocyanins composition |
5.46 |
|
anti-inflammatory activity |
1.20 |
|
antioxidant |
4.13, 5.34 |
|
apomixes |
3.20 |
|
apple |
5.30 |
|
Arabidopsis thaliana |
3.01, 3.08, 3.10, 9.07 |
|
arabinoxylans (AX) |
1.17 |
|
Arbuscular mycorrhizal fungi |
3.17, 7.29 |
|
Artemisia annua L. |
4.11 |
|
artificial inoculation |
1.13, 5.39 |
|
artificial microRNA |
7.26 |
|
Arundo donax |
5.14, 5.15 |
|
ascorbic acid |
4.09, 5.04 |
|
aspartic acid |
9.09 |
|
assembly |
4.03 |
|
association |
5.01 |
|
association mapping |
1.07, 5.22, 5.50, 5.52, 7.14, 8.18 |
|
association study |
5.40 |
|
autopolyploidy |
6.03 |
|
auxin |
3.03 |
|
avirulence genes |
7.20 |
B |
|
BAC |
9.05 |
|
BAC library screening |
9.08 |
|
barcoding |
6.04, 6.10 |
|
barley |
2.09, 8.13 |
|
Bayesian clustering |
5.32 |
|
best practice |
2.01 |
|
beta-glucans (BG) |
1.17 |
|
BiFC |
3.22 |
|
bioagonomic traits |
5.08 |
|
biochemical markers |
5.24 |
|
biodiversity |
5.13, 5.27, 5.30, 6.04 |
|
biofuel |
1.19, 4.15 |
|
bioinformatic analysis |
9.02 |
|
biological model |
7.21 |
|
biomass |
1.19, 2.03, 2.07 |
|
biomass production |
5.15 |
|
biophenols |
5.31 |
|
bioremediation |
9.12 |
|
biotic stress |
3.23, 4.09, 7.03, 7.23 |
|
bisulfite sequencing |
3.05 |
|
blue wheat |
5.46 |
|
Botrytis cinerea |
7.07 |
|
bottleneck |
6.02 |
|
Brachypodium distachyon |
7.06 |
|
Brassica |
3.01 |
|
Brassica oleracea |
4.14 |
|
Brassicaceae |
9.04 |
|
breeding |
1.16, 5.19, 5.41, 7.05, 7.20, 7.25, 9.01 |
|
broccoli |
5.10 |
|
Byssochlamis nivea |
9.12 |
C |
|
Cacopsylla pyri |
7.11 |
|
cadmium |
9.13 |
|
calcium signalling |
8.04 |
|
cAMP-sponge |
9.07 |
|
candidate gene |
6.11 |
|
carbon partitioning |
8.01 |
|
carotenoid |
3.15, 5.04 |
|
carotenoid content |
5.47 |
|
case-by-case |
S.01 |
|
CCCH zinc finger domain |
8.20 |
|
Cd uptake |
9.15 |
|
cell suspension cultures |
4.11 |
|
cell wall |
7.15 |
|
cellulose |
1.07 |
|
chamomile |
1.06 |
|
cherry |
5.30 |
|
Chicorium intybus |
1.11 |
|
Chlorophyceae |
4.15 |
|
chlorophyll |
2.06, 2.09 |
|
chloroplast DNA |
6.04 |
|
chloroplast genome |
6.10 |
|
chromatin immunoprecipitation |
8.09 |
|
chromosome engineering |
5.38 |
|
Cichorium endivia |
4.04 |
|
Citrus |
8.19 |
|
Citrus clementina |
9.09 |
|
Citrus sinensis L. (Osbeck) |
6.09 |
|
Citrus tristeza virus |
3.25 |
|
clones collection |
5.14 |
|
co-evolution |
7.20 |
|
colchicine |
1.22 |
|
cold acclimation |
8.12 |
|
cold resistance |
8.12 |
|
common wheat |
5.42 |
|
comparative approach |
S.01 |
|
consensus list |
5.35 |
|
conservation strategy |
5.21 |
|
copy number variation |
6.04 |
|
core collection |
5.49, 8.14 |
|
corn hybrid |
9.01 |
|
cpSSR |
5.17 |
|
Crocus sativus |
5.11, 5.12 |
|
crop quality |
4.01 |
|
crop wild relatives |
5.06 |
|
Cucumis melo L. |
7.24 |
|
Cucurbita pepo |
7.16 |
|
cultivar |
5.02 |
|
cultivated cardoon |
1.10 |
|
cuticle |
7.01 |
|
cyclodextrin |
4.11 |
|
Cynara cardunculus |
1.10, 4.12, 5.16, 6.02, 9.08 |
|
Cynara cardunculus var. sylvestris |
5.17 |
|
cytokinin signalling |
3.18 |
|
CzcCBA |
9.13 |
D |
|
defective endosperm mutants |
4.08 |
|
Dendrobium |
1.22 |
|
desaturase |
3.27 |
|
development |
3.09 |
|
Diabrotica virgifera virgifera |
7.19 |
|
digital imaging |
2.03, 2.05 |
|
dihydroflavanol 4-reductase |
3.22 |
|
diversifying selection |
7.25 |
|
diversity |
5.01 |
|
DNA methylation |
3.05, 3.19, 3.25 |
|
DNA repair |
8.06 |
|
DNA methylation |
8.08 |
|
domestication |
2.05, 6.12, 6.13 |
|
domestication events |
6.02 |
|
drought |
8.14, 8.21 |
|
drought stress |
5.40 |
|
drought tolerance |
8.02 |
|
drupe |
3.24 |
|
durum wheat |
1.05, 1.15, 1.17, 1.20, 2.06, 3.12, 3.13, 3.15, 3.16, 4.02, 4.07, 5.07, 5.44, 6.06, 7.18, 8.14, 8.20 |
|
DUS-Test |
5.23 |
E |
|
EcoTILLING |
2.03 |
|
eggplant |
1.02 |
|
Eggplant mottled dwarf virus (EMDV) |
4.10 |
|
electrical capacitance |
2.08 |
|
ELISA |
9.02 |
|
embryo bilateral symmetry |
3.03 |
|
embryogenesis |
3.09 |
|
emmer wheat |
5.08 |
|
energy crop |
5.14 |
|
environmental stress |
8.15 |
|
epigenetic |
3.11 |
|
epigenetic marks |
1.09 |
|
epigenetic variability |
5.12 |
|
epigenome |
1.09 |
|
epigenomics |
3.05 |
|
EST-SSR |
5.11 |
|
evolution |
4.02, 5.11, 6.10 |
|
ex situ collections |
5.07 |
F |
|
F1 hybrids |
1.11 |
|
FACE |
2.09 |
|
FACE experiment |
2.06 |
|
fatty acids |
3.27, 5.31 |
|
Fe deficiency |
9.15 |
|
female gametophyte |
3.09 |
|
fennel |
9.11 |
|
FHB |
5.38 |
|
fine-mapping |
7.06 |
|
fire blight |
7.11 |
|
FISH |
1.03, 9.08 |
|
flavonoids |
4.05, 5.26 |
|
flooding |
8.19 |
|
floral meristem |
3.02 |
|
flow cytometry |
1.03 |
|
flow cytometry and sorting |
1.22 |
|
flower development |
3.02 |
|
flower production |
5.13 |
|
flower related traits |
6.11 |
|
flowering |
1.19, 3.04 |
|
flowering time |
3.16, 5.49, 6.11 |
|
fluorodifen |
8.16 |
|
food allergies |
9.11 |
|
food specialties |
5.13 |
|
forest soil microorganisms |
5.33 |
|
Forl |
7.21 |
|
frost tolerance |
8.13 |
|
fruit |
3.01 |
|
fruit quality |
5.01 |
|
FT |
1.19 |
|
fumonisins |
1.12 |
|
functional biscuits |
1.18 |
|
functional food |
5.26 |
|
functional genomics |
7.26 |
|
functional markers |
5.44 |
|
functional trascriptomics |
6.07 |
|
fungal pathogen |
1.13 |
|
fungi |
7.22 |
|
Fusarium |
7.18 |
|
Fusarium head blight |
7.09 |
|
Fusarium verticillioides |
4.06, 5.39 |
|
Fusarium wilt |
7.24 |
G |
|
G x Y interaction |
5.46 |
|
gabaculine |
9.10 |
|
gas exchange |
8.21 |
|
GE interaction |
5.10 |
|
gene expression |
6.04, 8.21 |
|
gene flow |
5.05, 9.04 |
|
gene identification |
9.17 |
|
gene network |
5.49 |
|
gene regulation |
3.02, 3.11, 3.12 |
|
Geneland analysis |
5.33 |
|
genetic diversity |
1.06, 5.09, 5.14, 5.16, 5.18, 5.42, 5.50, 6.14 |
|
genetic diversity conservation |
5.05 |
|
genetic engineering |
1.21 |
|
genetic linkage map |
7.18 |
|
genetic map |
5.51, 7.02, 9.05 |
|
genetic resources |
8.11 |
|
genetic structure |
6.11 |
|
genetic transformation |
4.15 |
|
genetic variability |
2.09, 5.12 |
|
genome and transcriptome draft |
1.02 |
|
genome complexity reduction |
9.03 |
|
genome stability |
3.11 |
|
genomic approach |
1.04 |
|
genomics |
7.17, 7.23 |
|
genotype-by-sequencing |
5.19 |
|
genotyping |
5.48 |
|
genotyping platform SolCAP |
5.22 |
|
germination |
8.20, 8.23 |
|
germplasm |
5.25, 5.39 |
|
germplasm characterisation |
5.24 |
|
gliadins |
9.02 |
|
globe artichoke |
1.10 |
|
glucosinolates |
4.14 |
|
glutamate synthase |
3.14 |
|
glutathione transferase |
6.09, 8.16 |
|
glycosidase inhibitors |
7.15 |
|
GM plants |
S.01 |
|
GMP |
9.04 |
|
grain |
2.02 |
|
grain yield |
3.13 |
|
grapevine |
3.28, 4.03, 4.05, 7.28 |
|
grapevine rootstocks |
8.09 |
|
growth |
8.01 |
|
GWAS |
8.13 |
|
GxE |
4.02 |
|
H
|
|
haplotype |
1.05, 7.09 |
|
Hd3a |
1.19 |
|
HDACs |
1.09 |
|
HD-ZIP III |
3.10 |
|
HD-Zip III transcription factors |
3.03 |
|
health-promoting compounds |
1.20 |
|
heavy metals |
9.13 |
|
hemicellulose |
1.07 |
|
heritability |
5.14 |
|
High affinity transport system (HATS) |
8.03 |
|
High Resolution Melt |
9.08 |
|
high temperature |
8.14 |
|
high-throughput |
2.07 |
|
high-throughput sequencing |
6.07 |
|
histone acetylation |
3.09 |
|
histone deacetylase |
8.09 |
|
histone modifications |
1.09, 8.09 |
|
homeostasis |
9.16 |
|
Hordeum vulgare |
5.28, 5.29 |
|
hormonal regulation |
3.01 |
|
hortensia |
7.03 |
|
HPLC MS |
3.21 |
|
hybridization |
3.07, 5.05, 6.05 |
|
hydroponic system |
8.22 |
|
Hypericum perforatum |
3.20 |
|
hyperosmotic stresses |
8.05 |
|
hypersensitive response |
7.27 |
I |
|
IL |
9.16 |
|
Illumina |
6.15 |
|
Illumina sequencing |
3.23 |
|
in situ inventory |
5.21 |
|
in vitro infestation |
7.19 |
|
in vitro selection |
9.10 |
|
incompatible interaction |
7.21 |
|
innate immunity |
7.01 |
|
inner no outer |
3.28 |
|
insects |
7.22 |
|
inter-gene pool hybrids |
5.18 |
|
introgression |
5.28 |
|
inulin gene expression and allelic diversity |
4.04 |
|
in vitro tissue culture |
5.15 |
|
ionome |
9.16 |
|
iron |
9.14 |
|
isoprenoids |
4.11 |
|
Italian cultivars |
8.10 |
K |
|
K channels |
8.04 |
|
KNOPE1 |
3.24 |
|
KNOX trascription factors |
3.08, 3.18, 3.24 |
L |
|
landrace |
5.28, 5.29, 6.14 |
|
leaf polarity |
3.03 |
|
leaf rust |
7.10 |
|
leaf spot |
7.03 |
|
lignin |
1.07 |
|
linkage disequilibrium |
5.52 |
|
linkage map |
6.06 |
|
lipid transfer protein |
9.11 |
|
lipoxygenase activity |
5.47 |
|
local adaptation |
5.29 |
|
local populations |
5.02 |
|
local production |
5.26 |
|
low oxygen |
8.19 |
|
Lr19+Sr25 |
5.38 |
|
Lr19+Sr25+Yp |
5.03 |
M |
|
MAB |
1.11 |
|
MADS-domain transcription factors |
3.02 |
|
Magnaporthe oryzae |
1.16, 7.20 |
|
maize |
1.08, 1.09, 2.08, 8.07 |
|
MAKER |
6.15 |
|
male-sterility |
1.11, 9.18 |
|
mapped markers |
9.08 |
|
marker-assisted selection |
1.15, 7.13 |
|
markers |
5.23 |
|
Matricaria recutita |
1.06 |
|
mechanical stress |
7.01 |
|
Medicago truncatula |
3.18 |
|
meiotic mutants |
3.07 |
|
melon |
1.21, 6.16 |
|
membrane potential |
8.03, 8.04 |
|
meta-analysis |
1.08 |
|
metabolic engineering |
4.13 |
|
metabolic pathways |
4.01 |
|
metabolic profiling |
4.07 |
|
metabolome |
4.05 |
|
metabolomic analysis |
5.41 |
|
metabolomics |
4.01, 4.02, 4.06, 4.07, 6.03 |
|
meta-data |
2.01 |
|
metal transporters |
9.15 |
|
meta-QTL |
7.02 |
|
methyltransferases |
3.19 |
|
microalgae |
4.15 |
|
microarray |
1.13, 3.07, 6.03, 8.12, 8.19 |
|
microarray analysis |
4.05 |
|
microelements |
5.02 |
|
microRNA |
3.23, 8.07 |
|
microsatellites |
5.34 |
|
microsatellites analysis |
5.32 |
|
mineral biofortification |
9.17 |
|
mineral composition |
9.16 |
|
miRNA |
3.12, 3.20 |
|
mitochondria |
8.05 |
|
MLO |
7.25 |
|
resistance |
7.17 |
|
modern varieties |
5.28 |
|
molecular breeding |
1.14 |
|
molecular fingerprinting |
5.35 |
|
molecular markers |
1.16, 6.10, 8.22 |
|
monitoring |
1.12, 7.19 |
|
morphological traits |
5.07 |
|
Most Appropriate Areas (MAA) |
5.21 |
|
MS-AFLP |
5.12 |
|
MSAP |
8.08 |
|
MTP |
7.09, 9.05 |
|
multiparental population |
1.05 |
|
mutations |
9.03 |
|
MYB family |
3.21 |
|
N
|
|
natural variation |
3.27 |
|
NBI |
2.06, 2.09 |
|
NBS profiling |
7.03 |
|
NBS-LRR |
7.02 |
|
Next Generation Sequencing (NGS) |
1.03, 5.19, 6.10, 6.12, 6.13, 9.03, 9.12 |
|
Nicotiana tabacum |
3.21, 9.10 |
|
nitrate uptake |
8.03 |
|
nitric oxide signaling |
7.27 |
|
nitrogen fertilization |
2.05 |
|
nitrogen starvation |
3.12 |
|
NMR metabolic profiling |
4.04 |
|
NO |
8.04 |
|
nodule organogenesis |
3.18 |
|
non-invasive technologies |
2.01 |
|
nucleo-cytoplasm interaction |
3.06 |
|
nucleolus |
8.06 |
|
nuDNA markers |
5.32 |
|
NuSSR |
5.17, 5.18 |
|
nutrient uptake genes |
3.17, 7.29 |
|
nutritional improvement |
4.14 |
|
O
|
|
oat |
5.08 |
|
Oidium tuckeri |
1.14 |
|
Olea europaea |
3.27, 5.32, 6.07 |
|
olive oil |
5.31 |
|
on farm conservation |
5.25 |
|
organ patterning |
3.01 |
|
organic agriculture |
5.10 |
|
organic fertilization |
3.17, 7.29 |
|
Orobanche crenata |
7.05 |
|
Oryza sativa |
8.10 |
|
osmotic stress |
8.10, 8.23 |
|
over-expression |
9.09 |
|
ovule |
3.28 |
|
oxidosqualene cyclase |
4.15 |
P |
|
pathogen resistance |
7.04 |
|
pathway engineering |
3.21 |
|
PCA |
5.02 |
|
peach |
3.24 |
|
pear |
5.30, 7.11 |
|
pentachlorophenol |
9.12 |
|
pepper germplasm |
5.23 |
|
perennial wheat |
5.45 |
|
Petunia x hybrida |
9.18 |
|
Phaseolus vulgaris |
5.18, 5.24, 6.11, 6.12, 6.13, 6.14 |
|
phenotypic diversity |
5.42 |
|
phenotyping |
2.02, 2.07, 5.48, 5.50 |
|
phospholipase A2 |
8.05 |
|
photoperiod |
3.04, 3.16 |
|
photosynthesis |
8.01 |
|
phylogeny |
6.04 |
|
physical map |
1.04, 9.05 |
|
physical mutagenesis |
5.15 |
|
phytochemicals |
1.20 |
|
phytoene synthase gene |
3.15 |
|
plant architecture |
3.08 |
|
plant cell death |
7.27 |
|
plant chromosomes |
1.03 |
|
plant defence |
7.04, 7.22 |
|
plant genetic resources |
5.06 |
|
plant growth |
2.02 |
|
plant immunity |
7.04 |
|
plant mitochondrial potassium channel |
8.05 |
|
plant pathogen interaction |
7.27 |
|
plant phenotyping |
2.01 |
|
plant regeneration |
1.21 |
|
plant secondary metabolites |
4.12, 4.13 |
|
plant uncoupling protein |
8.05 |
|
plant virus |
7.26 |
|
plant-growth promoting rhizobacteria |
3.17, 7.29 |
|
plasmodesmata |
8.04 |
|
Plasmopara viticola |
1.14 |
|
plastid genetic engineering |
9.10 |
|
ploidy variation |
1.06 |
|
polenta |
5.26 |
|
pollen-pistil interaction |
9.09 |
|
polymorphism |
6.09, 6.16 |
|
polyphenol oxidase genes |
5.44 |
|
polyphenols |
4.03, 4.09 |
|
polyploid |
5.11, 6.04 |
|
polyploidization |
1.22, 3.19 |
|
pomegranate |
5.34 |
|
population structure |
5.09, 5.16 |
|
Populus spp. |
5.05 |
|
potato tubers |
5.47 |
|
potato wild species |
8.12 |
|
powdery mildew |
1.15, 5.37, 7.10, 7.17, 7.25 |
|
powdery mildew resistance |
7.02 |
|
predicted proteins |
1.04 |
|
prioritised list |
5.06 |
|
protein content |
1.15, 5.07 |
|
Prunus armeniaca |
5.35 |
|
Puccinia brachypodii |
7.06 |
|
purple wheat |
1.18, 5.46 |
Q |
|
qRT-PCR |
8.08 |
|
QTL |
1.05, 1.08, 2.08, 4.05, 5.01, 7.13, 7.14 |
|
QTL analysis |
1.10 |
|
QTL mapping |
7.11 |
|
quality traits |
5.23 |
|
quinolizidine alkaloids |
5.41 |
R |
|
R loci |
1.04 |
|
reactive oxygen species |
7.01 |
|
Real Time PCR |
3.14, 3.22 |
|
receptor-like kinases |
7.04 |
|
rehydration |
8.21 |
|
reproductive behaviour |
6.02 |
|
reproductive organs |
3.20 |
|
resequencing |
6.16 |
|
resistance |
7.05, 7.11, 7.18, 7.25 |
|
resistance gene |
1.14, 3.25, 5.36, 5.37, 7.03, 7.10, 7.20, 7.24 |
|
resource use efficiency |
2.01 |
|
response to selection |
8.11 |
|
restorer |
9.18 |
|
resveratrol |
7.28 |
|
retrotransposon |
3.26 |
|
R-genes |
6.15 |
|
rice |
1.16, 3.04, 5.48 |
|
risk assessment |
S.01 |
|
RNA silencing |
7.23 |
|
RNA-binding protein |
8.23 |
|
RNA-Seq |
6.12, 6.13, 8.10, 8.15 |
|
root architecture |
2.08 |
|
root damage |
7.19 |
|
root system architecture |
8.18 |
|
root traits |
2.05 |
|
roots |
8.22 |
|
rootstocks |
5.40 |
|
ROS |
8.04 |
|
ROS signalling |
3.06 |
|
runner bean |
5.25 |
S |
|
salinity |
8.08 |
|
San Marzano |
5.27 |
|
SBCMV |
7.13 |
|
scab |
5.38 |
|
SDS-PAGE |
9.02 |
|
secondary metabolites |
3.21 |
|
seed production haplotyping |
2.03 |
|
seed quality |
5.24 |
|
selection |
5.49 |
|
sensory profile |
5.31 |
|
Septoria tritici blotch |
7.14 |
|
sequencing |
3.14, 4.03, 6.09 |
|
sesquiterpene lactones |
4.12 |
|
sexual polyploidization |
3.07 |
|
shelf life |
7.07 |
|
shoot apical meristem activity |
3.03 |
|
shovelomics |
2.08 |
|
Simple Sequence Repeats (SSR) |
5.25 |
|
Single Nucleotide Polymorphisms (SNP) |
5.51, 6.06, 6.12, 6.13 |
|
siRNA |
3.25, 8.07 |
|
small RNA sequencing |
8.07 |
|
SNP |
5.42, 5.22, 7.09, 7.16, 9.18 |
|
SNP genotyping |
6.14 |
|
SNP markers |
5.04 |
|
Solanaceae |
1.02, 5.36 |
|
Solanum lycopersicum L. |
1.04, 5.01, 5.04, 5.22, 7.23, 7.26, 8.03 |
|
Solanum pennellii |
8.22 |
|
Solanum spp. |
9.17 |
|
Solanum tuberosum |
3.22, 6.04 |
|
SolCAP |
5.04 |
|
sorghum cultivars |
9.02 |
|
spatial analysis |
5.17 |
|
spatial genetic structure |
5.05 |
|
spelta |
5.08 |
|
sprouts |
4.14 |
|
SSR |
5.07, 5.27, 5.30, 5.31, 5.34, 5.35, 5.42, 5.51, 7.14 |
|
SSR markers |
1.11, 5.16 |
|
stability |
5.10 |
|
stomata |
8.23 |
|
Strategy I |
9.14 |
|
Strategy II |
9.15 |
|
stress response |
4.14 |
|
stress tolerance |
5.40, 7.28, 8.11, 8.16, 8.18 |
|
strigolactones |
7.05 |
|
stripe and stem rust |
1.15 |
|
sucrose synthase 2 |
3.13 |
|
sugar metabolism |
4.08 |
|
sulfate accumulation |
9.14 |
|
sulfate transporters
|
9.14 |
|
sustainable agriculture |
5.45 |
|
synthetic varieties |
5.10 |
|
systemin |
7.22 |
|
systems biology |
8.02 |
T |
|
temperature compensation |
8.01 |
|
temporal analysis of genetic variation |
5.29 |
|
tetraploid wheat |
5.09, 5.52 |
|
thermospermine |
3.10 |
|
Thinopyrum spp. |
5.45 |
|
Tiling array |
7.06 |
|
Tobacco BY-2 cells |
9.07 |
|
tomato |
7.07, 7.17, 9.11, 9.14, 9.16 |
|
Tomato spotted wilt virus (TSWV) |
3.23, 4.10 |
|
ToMV |
7.21 |
|
Tospovirus |
5.36 |
|
traits |
2.02 |
|
transcript/metabolite profiling |
3.06 |
|
transcription factors |
3.26 |
|
transcriptional regulation |
3.10 |
|
transcriptome |
8.02, 8.15 |
|
transcriptome profiling |
7.06 |
|
transcriptomic profile |
7.24 |
|
transgene pyramiding |
7.15 |
|
transgenic plant |
8.16, 9.13 |
|
transposable element |
3.11, 8.15 |
|
transposons |
6.16 |
|
T-RFLP methods |
5.33 |
|
Triticum |
2.05, 5.38 |
|
Triticum aestivum |
5.50 |
|
Triticum durum |
3.17, 5.03, 7.14, 7.29, 8.17, 8.18 |
|
Triticum durum Desf. |
5.51, 7.13 |
|
Triticum spp. |
5.45 |
|
Triticum turgidum |
5.37 |
|
Triticum turgidum ssp. dicoccum |
7.10 |
|
Triticum turgidum subsp. durum |
5.02 |
|
TSWV |
5.36 |
|
twinning with Canada |
1.13 |
|
tyrosyl-DNA phosphodiesterase |
8.06 |
|
TZF protein family |
8.20 |
V |
|
variations |
6.16 |
|
vascular development |
3.10 |
|
vernalization |
3.16 |
|
Vicia faba L. |
5.19 |
|
virus |
7.23 |
|
Virus-Induced Gene Silencing (VIGS) |
7.26 |
|
Vitis |
5.40 |
|
Vitis vinifera |
1.14, 3.05, 5.49 |
W |
|
|
water stress |
2.07 |
|
wheat |
1.03, 2.07, 3.06, 3.14, 7.02, 7.09 |
|
wheat defence |
7.15 |
|
wheat straw |
1.07 |
|
white lupin |
5.41 |
|
wild accessions |
6.14 |
|
wild harvested plants |
5.06 |
|
wild species |
6.03, 6.15 |
Y |
|
yabby family |
3.28 |
|
yeast |
7.28 |
|
yield |
1.05, 1.08, 5.23 |
|
yield QTL |
5.03 |
|
yield stability |
8.02 |
|
yield traits |
1.10 |
Z |
|
Zea mays |
1.12, 1.13, 3.11, 4.06, 4.08, 5.39, 7.19, 8.11, 8.15 |
|
zucchini |
5.13 |
|
zucchini squash |
7.16 |
|
Zucchini yellow mosaic virus |
7.16 |
|