| 2n
gametes |
3.08 |
| 454
pyrosequencing |
3.17 |
| 454
sequencing |
1.26 |
| 5A
chromosome |
6.09 |
|
|
|
| A |
|
| abiotic
stress |
2.18, 4.04, 4.08,
4.25, 4.31, 5.03,
S.04 |
| accessions
|
1.24 |
| acetylation
|
3.10 |
| adaptation
|
4.02 |
| adaptive
evolution |
1.61 |
| AFLP
markers |
1.27, 1.49 |
| Agrobacterium
tumefaciens |
4.57 |
| Agrobacterium-mediated
transformation |
5.23 |
| agroinfiltration
|
2.21 |
| alcohol
dehydrogenase |
5.24 |
| alfalfa
|
7.15, 7.16 |
| alkaloid-free
|
1.17 |
| allelic
variants |
6.35 |
| allergens
|
5.28 |
| alloplasmic
lines |
6.16 |
| allosyndesis
|
6.33 |
| Alternaria
blotch |
4.56 |
| amino
acids |
6.30, 6.38 |
| amylose
|
6.34 |
| anatomical
parameters |
7.12 |
| ancient
DNA |
1.09 |
| androgenetic
clones |
1.34 |
| andromonoecy
|
3.04 |
| annotation
|
1.25, 5.17 |
| anthocyanin
|
5.20, 5.26, 6.32
|
| antimicrobial
peptides |
4.36 |
| antioxidant
|
1.20, 1.31, 4.20,
7.11 |
| antioxidant
compounds |
5.23 |
| antioxidant
genes |
4.24 |
| aphids
|
4.39 |
| apomixis
|
3.13, 3.14, 3.15
|
| apple
|
2.25, 2.26, 4.55,
4.56 |
| Apulian
olive germplasm |
1.50 |
| Arabidopsis
|
3.05, 3.06, 4.25,
5.13 |
| Arabidopsis
thaliana |
3.11, 4.02, 4.04,
4.23, 4.29, 4.34,
5.02, 5.06, 5.08,
7.01 |
| aroma
|
7.22 |
| arrested
seeds |
3.11 |
| artichoke
|
1.30, 1.31, 4.14,
4.26, 5.22 |
| artichoke
viruses |
4.58 |
| ascorbate
|
2.03 |
| Asparagus
officinalis L. |
3.04, 7.14 |
| association
mapping |
2.14, 6.20, 6.26
|
| ATHB7
|
2.17 |
| atlas
|
2.02 |
| AuxIAA
transcription factors |
3.12 |
| auxin
|
3.06, 5.11, 5.12
|
| avena
|
2.16 |
B
|
|
| b-32 |
4.48 |
| BAC
|
6.01 |
| BAC
library |
6.19 |
| BAC-end
sequences |
6.04, 6.06 |
| bacterial
disease |
4.53 |
| barley
|
2.09, 2.13, 4.49,
6.06 |
| BaYMV
|
6.29 |
| berry
composition |
5.18 |
| berry
development |
2.23 |
| Beta spp. |
4.17 |
| Beta vulgaris |
4.10 |
| beta-1,4
endoglucanase |
4.51
|
| biodiversity
|
1.43, 1.44, 1.47,
1.65, 1.68, 2.16
|
| bioenergy
crop |
1.35 |
| bioinformatics
|
2.08, S.02 |
| biolistic
transformation |
4.35 |
| biotic
stress |
4.39, 4.43 |
| br2
|
5.12 |
| brachytic2
|
6.18 |
| breeding
|
1.15, 1.16, 1.17,
1.18, 1.66 |
| brown
midrib3 |
6.18 |
| BTH
|
4.27 |
| bulbing
fennel |
1.28 |
| Bulk
Segregant Analysis |
4.52 |
| BYDV
|
6.29 |
C
|
|
| C:N
partitioning |
6.38 |
| caffeoylquinic
acids |
5.22, 5.23 |
| cambium
|
4.24 |
Camellia spp.
|
1.57 |
|
| candidate
gene |
1.61, 1.62, 2.20,
5.18, 7.22 |
| canopy
reflectance |
2.13 |
| CAPS
marker |
7.13 |
| Capsicum spp. |
1.24 |
| Carolea
|
1.49 |
| carotenoid
|
2.03, 4.07, 6.05
|
| carotenoid
biosynthetic pathway |
1.22 |
| cattle
phylogeny |
1.09 |
| CBD
|
1.29 |
| CCCH
zinc finger |
5.13 |
| Cd
tolerance |
4.34 |
| cDNA
AFLP-TP |
4.53 |
| cDNA-AFLP
|
4.10 |
| cell
wall |
6.18 |
| cell-specific
genes |
2.10 |
| cereals
|
1.46 |
| chalcone
synthase |
7.19 |
| changing
genomic information |
S.03 |
| chemical
composition |
6.30, 6.31 |
| chiasmata
|
3.05 |
| chlorophyll
a fluorescence |
2.18 |
| chlorophyll
fluorescence |
2.17 |
| chloroplast genome |
1.59 |
| chloroplast
markers |
1.51 |
| chloroplast
microsatellites |
1.13 |
| chloroplast
transformation |
7.05 |
| chromatin
|
4.28 |
| chromosome
5A |
6.08, 6.15 |
| chromosome
engineering |
6.07 |
| chromosome
evolution |
1.19 |
| chromosome
sorting |
1.39 |
| Citrus |
7.23 |
| classificatory
and ordination procedures |
4.30 |
| cloning
|
1.64, 7.10 |
| cluster
analysis |
1.10 |
| cold
and salt stresses |
5.13 |
| cold
stress |
4.09, 4.10 |
| cold
tolerance |
4.11 |
| colonization
|
1.60 |
| columnar
|
5.19 |
| commercial
hybrids |
1.34 |
| common
bean |
1.12 |
| complementation
|
6.22 |
| conifers
|
1.62 |
| Copia |
7.24 |
| corn
|
6.41 |
| Corylus avellana |
1.54 |
| COSII
markers |
1.04 |
| cp
evolution |
1.59 |
| crop
evolution |
1.12 |
| cryptochromes
|
4.06 |
| cultivar
traceability |
6.36 |
| cultivars
|
1.16 |
| custom
microarray |
1.26 |
| customarray
|
2.05 |
| Cynara
|
1.30 |
| Cynara
cardunculus |
1.33, 5.23 |
| Cynara diversity |
1.29 |
D
|
|
| DArT
markers |
6.11 |
| deep
sequencing |
S.02, S.04, 4.14
|
| defence
gene |
4.38, 4.44 |
| defence
responses |
4.49 |
| defensin
|
4.36 |
| degenerate
primers |
7.19 |
| deletion
mapping |
2.26 |
| delta-carotene |
7.07 |
demography
|
1.60 |
| Dendrobium |
1.55 |
| desaturation
|
2.24 |
| developing
grains |
4.18 |
| developmental
mutants |
1.03 |
| developmental
plasticity |
4.04 |
| differential
allele expression |
1.36 |
| dioecy
|
3.04 |
| disulfide bonds |
6.37, 7.05 |
| diurnal cycle |
4.06 |
| diurnal gene expression |
4.12 |
| diversity
|
1.14 |
| Diversity Array Technology |
1.47 |
| DNA barcoding |
1.08, 1.59 |
| DNA ethylation |
3.07, 4.32, 5.08
|
| DNA
microsatellites |
6.36 |
| DNA
polymorphisms |
1.62 |
| DNA-methylation
|
4.13 |
| domestication
|
1.06, 1.12 |
| downy mildew |
4.31 |
| drought
|
2.12, 4.15, 4.17,
4.19 |
| drought response |
1.60 |
| drought stress |
1.61, 2.07, 4.18,
4.23 |
| drought tolerance |
2.17, 4.24 |
durum
wheat (Triticum durum
Desf.)
|
1.40, 1.41, 4.16,
4.18, 5.13, 6.04,
6.05, 6.09, 6.11,
6.19, 6.20, 6.24,
6.25, 6.26, 6.27
|
| durum
wheat semolina |
6.36 |
| DXR
|
5.27 |
| DXS
|
5.27 |
E
|
|
| E. coli |
7.03 |
| E3
ligase |
5.03 |
| EcoTILLING
|
1.41 |
| eggplant
|
1.25 |
| electrophoresis
|
1.38 |
| embryo
development |
3.11 |
| empty
pericarp |
6.22 |
| energy
value |
6.30 |
| environment
|
4.28 |
| environmental
associations |
1.61 |
| environmental
monitoring |
1.68 |
| environmental
stresses |
4.32 |
| enzyme-linked
immunosorbent assay |
6.31 |
| epigenetic
marks |
4.32 |
| epigenetics
|
6.14 |
| EST
|
1.33, 6.27 |
| ethylene
|
4.40 |
| EU
policy directives |
7.26 |
| everbearing |
4.12 |
| evolution |
2.01 |
| evolution
of the flower |
3.02 |
| expression
analysis |
2.12, 3.11 |
| expression
in drupe |
5.15 |
| expression
level |
7.18 |
| external
reference |
4.54 |
F |
|
| Fagaceae |
1.59 |
| Falsiflora
|
3.02 |
| farming
location |
1.46 |
| fatty
acid biosynthesis |
1.64 |
| fatty
acids |
6.31 |
| fatty
acids pathway |
2.20 |
| female
and male genetic determinants |
3.03 |
| FHB
|
4.47 |
| FHB
resistance |
6.07 |
| FISH
|
1.19 |
| flavonoids
|
5.10 |
| flow
cytometry |
1.55, 6.12 |
| flow
karyotyping |
1.39 |
| flower
development |
3.02, 3.17 |
| flower
morphology |
1.57 |
| flowering
|
4.12 |
| flowering
photoperiodic response |
7.09 |
| flowering
time |
3.07, 4.23 |
| fluorescent
in situ
hybridization |
1.39 |
| Foeniculum vulgare
|
1.28 |
| FORL
resistance |
4.37 |
| freezing
tolerance |
4.11 |
| fresh-cut
|
7.21 |
| frost
tolerance |
2.14, 2.15 |
| fruit
|
2.03 |
| fruit
growth |
3.16 |
| fruit
landraces |
1.53 |
| fruit
quality |
4.20, 7.20 |
| fumonisins
|
1.45 |
| functional
foods |
5.21 |
| functional
genomics |
1.43, 2.22 |
| fungal
inoculation |
4.54 |
| fungi
|
1.05 |
| Fusarium
|
1.45 |
| Fusarium head blight |
6.25 |
| Fusarium
oxysporum |
4.50 |
| Fusarium
verticillioides |
4.48 |
G
|
|
| gabaculine |
6.28 |
| GAD65
|
7.03, 7.04 |
| gene
annotation |
4.53 |
| gene
containment and targeting |
7.26 |
| gene
expression |
2.27, 4.22, 4.41,
5.24, 6.38, 6.40,
7.01 |
| gene
expression analysis |
4.21 |
| gene
flow |
1.35 |
| gene
pool |
1.14 |
| gene
regulation |
6.13, 6.16 |
| gene
silencing |
4.57 |
| gene
structure |
6.40, 7.19 |
| gene
transcription |
6.14 |
| gene
trap |
2.10 |
| genetic
distance |
1.36, 1.52 |
| genetic
diversity |
1.13, 1.24, 1.32,
1.48 |
| genetic
drift |
1.60 |
| genetic
linkage map |
6.11 |
| genetic
map |
6.01, 7.14 |
| genetic
resources |
1.11, 1.28, 1.31,
1.32, 1.44 |
| genetic
variability |
1.40, 1.56, 2.15,
4.38 |
| genetic
variation |
1.31, 1.58 |
| genome
|
2.01 |
| genomics
|
1.42, 3.13, 4.15,
S.04 |
| genotype-by-environment
interaction |
4.30, 4.43 |
| genotypes
|
1.46 |
| genotyping
|
1.63 |
| germin
protein |
4.44 |
| germination
|
4.13 |
| germplasm
|
1.37, 1.52 |
| germplasm
characterization |
1.53 |
| germplasm
collections |
1.35 |
| germplasm
genebank |
1.53 |
| germplasm
management |
1.48 |
| GFP
fusion proteins |
5.11 |
| GISH
|
1.19 |
| gliadins
|
1.38 |
| glutamine
synthetase (GS) |
6.03 |
| gluten
proteins |
2.11 |
| glutenin
subunits |
2.11, 6.37 |
| glutenins
|
1.38 |
| glycine
oxidase |
7.16 |
| glycosilation
|
5.28 |
| glyphosate
|
7.16 |
| GMO
|
1.68 |
| GMP
|
1.65, 1.66 |
| GP-2
|
4.43 |
| grafted
vegetables |
4.05 |
| grain
protein content |
6.03 |
| grape
|
4.22 |
| grape
development |
2.02 |
| grapevine
|
4.36 |
| grapevine
cultivars |
1.48 |
| gravitropism
|
5.12 |
| green
flesh |
7.08 |
| Green-ripe |
7.08 |
| growth
|
1.09, 4.13 |
| GSA
|
7.15 |
| guard
cell |
4.29 |
| Gypsophila
|
1.56 |
| Gypsy
|
7.24 |
H
|
|
| hairy
roots |
2.21, 5.23 |
| haplotype
|
1.08 |
| harvest
time |
7.20 |
| HD-ZIP
III transcription factors |
5.02 |
| heat
stress |
2.12 |
| heavy
metals |
4.35 |
| Helianthus annuus L. |
1.35, 1.37, 4.30
|
| heritability
|
1.54 |
| hermaphroditism
|
3.04 |
| heterogeneous
inbred families |
6.04 |
| heterosis
|
1.36, 6.23 |
| heterothallism
|
7.06 |
| High
Resolution Melting |
4.16 |
| high-amylose
|
2.06 |
| histone
acetylation |
3.05 |
| HMW
DNA |
6.19 |
| homologous
recombination |
7.15 |
| homonym
|
1.50 |
| Hordeum
vulgare |
1.03, 2.14,
2.15 |
| hormones
|
4.06 |
| housekeeping
gene |
4.54, 7.18 |
| HPLC
|
4.17 |
| HRM
technique |
1.63 |
| Huanglongbing
|
7.23 |
| Hypericum perforatum
|
3.13 |
I
|
|
| identification
|
1.08 |
| ihpRNA
interference |
5.13 |
| Illumina
sequencing |
2.01 |
| image
analysis |
2.07 |
| immunofluorescence
|
3.10 |
| impact
assessment |
1.68 |
| in vitro callus cultures |
7.11 |
| in vitro collection |
1.53 |
| inbred
line |
6.41 |
| inbreeding
level |
1.65 |
| INDEL
|
4.16 |
| index
values |
2.13 |
| induced
systemic resistance |
4.38 |
| infected
roots |
4.05 |
| interspecific
hybridization |
1.35 |
| interspecific
polyploids |
7.02 |
| intracultivar
variation |
1.49 |
| introgression
lines |
1.04 |
| ISBP
|
6.08 |
| isogenic
lines |
4.37 |
| ISSR
|
1.56 |
| Italian
rice cultivars |
4.27 |
| ITPGRFA
|
1.29 |
J
|
|
| jasmonic
acid |
3.06 |
| Jatropha curcas L. |
1.63, 1.64, 5.25 |
K
|
|
| kernel
|
6.32 |
| kernel
proteins |
6.35 |
| kernel
texture |
6.33 |
| KNOTTED-like
transcription factors |
5.15 |
| KNOX |
5.06 |
| KNOX genes |
5.14 |
L
|
|
| laccase |
4.33 |
| lactic
acid bacteria |
1.05 |
| landraces |
1.10 |
| laser
microdissection |
2.10 |
| leaf
rust (Puccinia triticina
Eriks.) |
6.20 |
| leaf
senescence |
7.17 |
| leaf
stripe |
6.29 |
| leaf
stripe resistance |
2.14 |
| legumes
|
5.04, 5.09 |
| Lemna
minor |
4.35 |
| lentil
|
1.16 |
| lettuce
|
4.39 |
| light
quality changes |
4.03 |
| lignin
|
6.18 |
| lignin
biosynthesis |
7.25 |
| linoleic
acid |
6.41 |
| lipid
breakdown |
1.64 |
| lipid
synthesis |
2.24 |
| lipoxygenase
|
6.05 |
| local
varieties |
1.11 |
| localization
|
5.25 |
| Lotus
spp. |
5.10 |
| Lr14
|
6.20 |
| Lr19+Yp
|
6.07 |
| LTR-retrotransposons
|
7.24 |
| lutein
|
7.07 |
| Lycopersicon
esculentum Mill. |
5.21 |
M
|
|
| maize |
6.17, 6.18, 6.22,
6.23, 6.32 |
| maize
germplasm |
1.45 |
| Malus domestica |
5.19 |
| Malus x domestica |
5.20 |
| mapping
|
4.55, 5.15 |
| mapping
populations |
1.54 |
| marker-assisted
breeding |
1.42, 4.15 |
| Marker-Assisted-Selection |
1.21, 1.58, 5.05
|
| mating
type |
7.06 |
| maturation
process |
2.11 |
| Medicago
truncatula |
5.04, 5.09 |
| meiosis
|
3.05 |
| metabolic
engineering |
5.27, 7.07 |
| metabolic
profiling |
7.20 |
| metabolite
profiling |
6.16 |
| metabolome
|
4.10 |
| metabolomics
|
2.05, 7.21 |
| metallothioneins
|
4.24 |
| methylation
|
3.10 |
| microarray
|
1.23, 2.02, 2.27,
4.12, 4.37, 4.41,
4.42, 4.53, 4.59,
5.08, 6.14 |
| microRNA
|
4.14, 6.02, 6.13
|
| microRNA
biogenesis |
S.02 |
| microsatellite
|
1.37, 1.57, 6.09
|
| migratory
birds |
1.05 |
| miRNA
|
S.04 |
| mitochondria
|
7.17 |
| molecular
and phenotypic characterization |
6.04 |
| molecular
cloning |
2.19 |
| molecular
diagnostics |
5.28 |
| molecular
farming |
5.28 |
| molecular
markers |
1.30, 1.42, 1.48,
5.19, 6.01, 6.21,
6.24, 6.26 |
| molecular
techniques |
1.07 |
| monitoring
of GMTs |
7.26 |
| monospermic
taxa |
3.16 |
| morphological
characterization |
1.24, 1.32 |
| mRNA
profiling |
6.38 |
| M-SAP
|
4.13 |
| multiplex
|
1.37 |
| multispermic
taxa |
3.16 |
| Muscat
of Hamburg |
2.05 |
| mutagenesis
|
2.26 |
| mutant
collections |
5.04, 5.09 |
| mutant
lines |
7.01 |
| mutant
population screening |
2.04 |
| mutants
|
2.09 |
| mutation
|
2.01 |
| myb
|
4.27 |
| MYB10
|
5.20 |
| mycotoxins
|
2.16 |
N
|
|
| NAC |
5.06 |
| NAD-
dependent deacetylase |
7.01 |
| NBS
and LRR domains |
4.26 |
| near
isogenic lines (NILs) |
2.09 |
| nematode |
4.39 |
| nepoviruses |
4.58 |
| network
|
1.29 |
| neutrality
tests |
1.61 |
| Never-ripe |
7.08 |
| next
generation sequencing |
1.33, 6.02, 7.23,
7.25 |
| next-generation
sequencing technologies |
1.58 |
| NF-Y
genes |
3.11 |
| NGS
sequencing |
1.26 |
| Nicotiana
benthamiana |
7.04 |
| Nicotiana species |
7.02 |
| Nicotiana
tabacum |
4.33, 4.34 |
| Nitric
Oxide |
2.04 |
| NMR
|
4.10 |
| NMR
spectroscopy |
4.11 |
| non
complementation |
6.22 |
| non
photochemical quenching |
2.18 |
| non-invasive
monitoring |
2.13 |
| non-invasive
screening |
2.17 |
| non-TIR
|
4.26 |
| novel
resistance genes |
6.29 |
| nuclear-cytoplasmic interaction |
6.16 |
| nucleotide diversity |
1.06 |
| nutritional quality |
1.45 |
O
|
|
| oats |
6.33 |
| off-season
potato |
1.23 |
| oil
accumulation |
2.24 |
| oil
crop |
7.02 |
| oil
DNA |
1.09 |
| Olea europaea L. |
1.49, 1.51, 2.24,
3.03, 3.17, 4.40,
5.24, 7.18, 7.19
|
| olive
|
1.51 |
| olive
aroma |
5.24 |
| olive
fly |
4.40 |
olive
mill wastewater
|
4.33
|
| Opaque
mutants |
6.38 |
| origin
|
1.06 |
| orthologs
|
5.07 |
| osmotic
stress |
4.27 |
| Osmyb4
|
6.17 |
| ovary
abortion |
3.17 |
| overexpression |
5.14, 5.27 |
| ovule
development |
3.14 |
P
|
|
| paralogs |
5.07 |
| parthenocarpy
|
3.12 |
| pasta
colour |
1.40, 6.05 |
| pathogen
infection |
4.46 |
| pathogen
resistance |
2.21 |
| pathogen
virulence |
4.51 |
| PDO
Altamura bread |
6.36 |
| peach
|
5.15, 5.17, 7.21,
7.22 |
| pectin
|
4.45 |
| Pennisetum squamulatum |
3.13 |
| Petunia |
2.27 |
| Pgip |
4.46 |
| PGRFA |
1.29 |
| Phalaenopsis
|
1.55 |
| Phaseolus
coccineus |
1.13 |
| Phaseolus vulgaris
L. |
1.06, 1.10, 1.11,
1.14 |
| phenolic
content |
1.46 |
| phenology
|
5.18 |
| phenotypic
plasticity |
2.22 |
| phenotypic
validation |
6.23 |
| phenotyping |
2.15 |
| phenylpropanoid |
4.22 |
| phenyl-propanoid
pathway |
5.20 |
| phenylpropanoids
|
5.22 |
| Phi
29 polymerase |
6.12 |
| phloem-feeding
insects |
4.41 |
| phylogeny |
1.52 |
| physical
deletion mapping |
6.09 |
| physical
map |
6.01 |
| physical
mapping |
6.12 |
| phytochelatins
|
4.34 |
| phytochrome
signalling |
4.03 |
| phytochromes
|
4.06 |
| phytoremediation
|
4.33 |
| pig
feeding |
6.41 |
| pigmented
rice |
5.26 |
| PIN
auxin efflux carriers |
5.11 |
| Pinus
halepensis |
1.60 |
| plant
architecture |
5.14 |
| plant
defence |
4.38, 4.40 |
| plant
density |
6.23 |
| plant
disease |
2.08, 4.44, 6.25
|
| plant
genetic resources |
1.27 |
| plant
nutrition |
2.07 |
| plant
phenomics |
2.07 |
| plant
protection |
4.48 |
| plant
reproduction |
3.14 |
| plant
trasformation |
6.33 |
| plant
virus tropism |
4.58 |
| plant–insect
and plant-fungi interactions |
4.42 |
| plant–insect
interaction |
4.41 |
| plant-microbe
interactions |
4.38 |
| plant-pathogen
interaction |
4.49 |
| plant-virus
interactions |
4.59 |
| plastid
transformation |
7.13 |
| plastome
sequence |
7.13 |
| PMEI
|
4.45 |
| pmi
|
6.28 |
| Poa pratensis
|
3.13 |
| pollen
flow |
1.66 |
| polyamines
|
4.25 |
| polymorphisms
|
6.13 |
| polyphenol
oxidase |
1.40 |
| polyphenols
|
1.31 |
| polyploidization
|
5.08 |
| polyploids
|
7.12 |
| polyploidy
|
5.07 |
| poplar
|
7.25 |
| poplar
genotypes |
4.24 |
| population
genetics |
1.62, 1.67 |
| population
structure |
1.13, 6.10 |
| Populus
trichocarpa |
7.24 |
| positional
cloning |
2.09 |
| post-harvest
|
4.22 |
| post-transcriptional
gene silencing |
2.21 |
| post-translational
modifications |
4.02 |
| potato
|
3.08, 4.53, 7.13
|
| powdery
mildew |
6.21, 6.29 |
| poxA1b |
4.33 |
| PPR
proteins |
S.03 |
| prediction
pipeline |
2.08 |
| primary gene-pool |
1.54 |
| principal
component analyses |
1.57 |
| proanthocyanidins
|
5.10, 5.26 |
| prosystemin
|
4.42 |
| protein
folding |
6.40, 7.05 |
| protein
phosphorylation |
4.49 |
| protein-protein
interaction |
5.03 |
| proteomics
|
4.08, 4.18, 4.37,
4.47, 4.49, 6.15,
6.37, 6.39 |
| protodioscin
|
1.34 |
| protoplast
fusion |
1.55 |
| Prunus
persica |
7.20 |
| PS
|
3.08 |
| PTGS
|
4.05, 4.58 |
| Puccinia
asparagi |
7.14 |
| Puccinia
graminis |
6.26 |
| purificaton
|
7.03 |
| pyrosequencing
|
3.14 |
Q
|
|
| qRT-PCR |
4.45 |
| QTL
|
1.04, 1.21, 1.54,
2.25, 4.56, 7.22
|
| QTL
analysis |
5.18, 6.03 |
| qualitative
characterization |
1.23 |
| quality
|
6.35, 7.21 |
| quality traits |
2.16 |
| quantitative RT-PCR |
4.54 |
| quantitative trait locus |
6.24 |
R
|
|
| R2R3
MYB |
4.31 |
| RAD
tags |
1.25 |
| RAPD
|
1.55, 4.52 |
| rare
variants |
7.25 |
| ready-to-eat
produce |
7.21 |
| Real
time |
5.05 |
| Real
Time PCR |
4.17, 7.18 |
| Real
Time RT-PCR |
4.51 |
| Recombination
Inbred Lines |
6.24 |
| regulatory
genes |
6.32 |
| repetitive
DNA |
6.06 |
| repetitive elements |
6.02 |
| reproductive
structure |
3.16 |
| re-sequencing
|
4.19 |
| reserves
|
5.25 |
| resistance
|
4.39, 4.55, 4.56
|
| resistance breeding |
4.43 |
| resistance gene |
2.08, 6.21, 6.25
|
| resistance to virus infection |
4.05 |
| retrotransposon
|
1.36 |
| reverse genetics |
1.43 |
| RGA
genes |
4.26 |
| Ribosome Inactivating Protein |
4.48 |
| rice
|
1.42, 1.43, 1.44,
4.15 |
| RNA
editing |
S.03 |
| RNA
editing factors |
S.03 |
| RNAi
|
2.19 |
| RNA-Seq
|
2.03, 2.23, 2.27,
5.17 |
| RP-HPLC
|
1.34 |
| rRNA genes |
1.19 |
| RT-PCR
|
4.07, 7.10 |
| ruminal
bloating |
5.10 |
| rutin
|
1.34 |
S
|
|
| Saccharomyces cerevisiae
|
1.05, 1.07, 7.04
|
| safeguard
|
1.11 |
| safety
|
1.45 |
| SAG
genes |
7.17 |
| salinity
|
4.13 |
| salt
stress |
4.02, 4.14 |
| Salvia
sclarea |
5.27 |
| second-site-non
complementation |
6.22 |
| seed
|
5.25 |
| seed
predation |
3.16 |
| seed
production |
7.02 |
| seed
quality |
1.15 |
| selectable
marker |
6.28 |
| self-incompatibility
|
3.03 |
| self-thinning
|
2.25 |
| sexual
polyploidization |
3.08 |
| shade
adaptation |
4.03 |
| shoot
apical meristem |
5.06 |
| signal
peptide |
7.05 |
| signaling
|
2.04 |
| silencing
|
5.14 |
| Simple
Sequence Repeat (SSR) |
1.10, 1.51, 1.67,
6.08, 6.10, 6.24,
7.14 |
| siRNA
|
S.04 |
| S-locus
|
3.03 |
| small
RNA |
4.09, 6.14 |
| smallRNA
biogenesis |
S.02 |
| SNP
|
1.08, 1.12, 1.14,
1.41, 1.44, 2.25,
2.26, 4.16, 4.19,
7.14 |
| SNP
markers |
1.33 |
| SNPs
discovery |
1.25 |
| socio-economic
analyses |
7.26 |
| soil-borne
disease |
4.52 |
| Solanum |
7.12, 7.13 |
| Solanum lycopersicum L. |
2.03, 2.08, 3.02,
3.12, 4.21, 4.50,
4.51, 4.52, 4.59
|
| Solanum pennellii introgression
lines (ILs) |
4.20 |
| Solanum
torvum |
1.26 |
| Solanum
tuberosum |
1.27 |
| somatic
embryogenesis |
1.28 |
| sorghum
hybrid |
6.30, 6.31 |
| sorghum
pure line |
6.30, 6.31 |
| SRS |
4.58 |
| SSR
markers |
1.50, 1.63, 6.25
|
| stability
|
4.30 |
| stamen
development |
3.06 |
| starch
|
2.06, 6.34 |
| steroidal
saponins |
2.19 |
| sterol biosynthetic pathway |
7.10 |
| stilbene
synthase |
4.31, 5.21 |
| strain biodiversity |
1.07 |
| stress
response |
1.44, 4.15 |
| stress
tolerance |
4.16, 4.19, 4.21,
6.17 |
| subterranean
seeds |
1.18 |
| sugars
|
4.17 |
| sulphate starvation |
4.09 |
| sunflower
|
2.20 |
| sunflower hybrids |
1.36 |
| sweet orange |
5.05 |
| synonymy
|
1.50 |
synteny
|
6.04, 6.20 |
T
|
|
| T. monococcum |
1.38 |
| T1DM
|
7.03, 7.04 |
| target
genes |
6.13 |
| target
species |
1.65, 1.66 |
| tester
|
6.23 |
| tetraploid
wheat |
6.10 |
| thylakoid
|
7.05 |
| TILLING
|
1.43, 2.01, 2.06,
2.26, 3.12 |
| TILLING
analysis |
2.20 |
| TIR
|
4.26 |
| tissue
culture |
1.28 |
| tomatinase
|
2.19 |
| tomato
|
1.04, 1.20, 1.21,
2.17, 3.12, 4.07,
4.08, 4.19, 4.25,
4.37 |
| tomato
introgression lines |
7.11 |
| tomato
spp. |
7.10 |
| ToMV
|
4.50 |
| total
antioxidant capacity |
5.26 |
| totipotent”
cDNA library |
6.27 |
| traceability
|
1.23 |
| transcription
|
4.28 |
| transcription
factor |
4.11, 4.29, 5.20,
5.05, 5.22 |
| transcription
factor genes |
4.03 |
| transcriptional
profile |
1.20 |
| transcriptome
|
2.02, 2.22, 4.09,
5.17, 7.23 |
| transcriptome
comparison |
2.27 |
| transcriptomics
|
2.05, 4.59 |
| transgenic
forest trees |
7.26 |
| transgenic
plant |
6.17, 7.07 |
| transgenic
tomato |
7.08 |
| transgenic
wheat |
2.11, 4.47, 6.39
|
| transient
transformation |
4.57 |
| translational
efficiency |
5.02 |
| transposon
|
4.28 |
| trans-resveratrol
|
5.21 |
| TRAPs
|
1.56 |
| tree
architecture |
5.19 |
| Trifolium
subterraneum |
1.19 |
| triticale
|
2.13 |
| Triticum |
6.40 |
| Triticum
durum |
2.12, 6.07, 6.34
|
| Triticum spp. |
4.44 |
| Triticum
turgidum |
6.21 |
| trophic
links |
1.65 |
| truffles
|
1.67, 7.06 |
| TSWV
|
4.05 |
| tuber
|
7.06 |
| Tuber magnatum |
1.67 |
| TYLCV
|
4.50 |
U
|
|
| ubiquitination |
5.03 |
| ubiquitin-mediated
proteolysis |
5.06 |
| Ug99
|
6.26 |
| uORFs
|
5.02 |
| UV-B radiation |
4.07 |
| UVR8 gene |
4.04 |
V
|
|
| vacuolar
transporter |
4.34 |
| variability
|
1.30 |
| varietal
testing |
1.42 |
| variety
|
1.30 |
| vascular
development |
5.02 |
| vascular
wilts |
4.52 |
| Venturia inaequalis |
4.55 |
| Vicia faba L. |
1.15 |
| Vicia sativa |
1.18 |
| virus
disease |
4.59 |
| vitamin
C |
7.11 |
| Vitis cultivar |
1.08 |
| Vitis vinifera |
1.47, 2.05, 2.22,
2.23, 5.18, 7.17,
S.02 |
| volatile
compounds |
5.24 |
| volatile
organic compounds (VOCs) |
7.22 |
W
|
|
| water
damage |
6.17 |
| water
deficit |
4.21 |
| water
deficit tolerance |
4.20 |
| water
stress |
4.29 |
| waxy gene |
6.34 |
| wheat
|
2.11, 4.45, 4.46,
4.47, 5.03, 6.01,
6.02, 6.03, 6.08,
6.15, 6.16, 6.33,
6.37 |
| wheat allergy |
6.39 |
| wheat aneuploid |
6.12 |
| wheat improvement |
1.39 |
| wheat kernel proteins |
4.18, 4.47, 6.39
|
| wheat lines |
6.35 |
| wheat quality |
6.40 |
| wheat transformation |
6.28 |
| white
lupine |
1.17 |
| wild
grape |
1.48 |
| wild
species |
1.04, 1.21, 4.43 |
| wild
strawberry |
4.12 |
| wild
tomato species |
1.22, 7.09 |
| wine |
4.22 |
| winter
hardiness |
2.15 |
| wounding
|
4.46 |
| WRKY |
4.27 |
X
|
|
| xanthophyll
biosynthesis |
7.08 |
| xanthophylls
cycle |
2.18 |
Z
|
|
| Zea
mays |
3.07, 4.09, 4.28,
4.32, 5.11, 5.12,
6.14 |
| ZmPIN1 |
5.12 |
|
|