Società Italiana di Genetica Agraria
fondata nel 1954 da Carlo Jucci
Italian Society of Agricultural Genetics
founded by Carlo Jucci in 1954

Congressi SIGA
- Book of abstract
- Scientific Programme
- Session I - Genomics and breeding of vegetables
- Session II - Plant-environment interactions
- Session III - Secondary metabolism
- Session IV - Gene regulation
- Session V - Association and QTL mapping
- Session VI - Integrating global analysis: a window on Systems Biology
- Session VII - Miscellanea
- Symposium on "Plant Evo-Devo - A tribute to Darwin"
- Authors Index
- Keywords Index
![]() Ministero delle Politiche Agricole, Alimentari e Forestali |
![]() Università
degli
Studi di Torino |
![]() |
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
|
![]() |
|
![]() |
![]() |
![]() |
| |
![]() |
![]() |
Keywords Index
| A | B | C | D | E | F | G | H | I | J | K | L | M | N |
| O | P | Q | R | S | T | U | V | W | X | Y | Z |
| 2D-PAGE | 2.02 |
| 454 sequencing | 2.60, 6.04 |
| 5H | 2.60 |
| 5S rDNA | 7.71 |
| A | |
| Abc1-like gene | 2.39 |
| Abies alba | 7.82 |
| abiotic stress | 7.87 |
| ACAULIS5 | 4.13 |
| adult plant resistance | 2.21 |
| Aegilops tauschii | 4.16 |
| Affymetrix | 7.10 |
| Affymetrix oligonucleotide array | 2.41 |
| AFLP | 1.15, 1.23, 7.52, 7.66, 7.75, 7.89, 7.19 |
| Aglianico | 2.50 |
| Agrobacterium tumefaciens | 7.51, 7.83 |
| alfalfa | 7.49 |
| allele mining | 7.34 |
| allelic sequence variation | 2.55 |
| alloplasmic lines | 7.17 |
| alternative splicing | 4.16 |
| amylose content | 7.32 |
| Anemone coronaria | 7.64 |
| anther dehiscence | 4.07 |
| anthocyanin | 2.50, 2.63, 3.02, 3.05, 3.24 |
| anthocyanin mutants | 3.03 |
| anthocyanins transporters | 7.29 |
| anticancer activity | 7.43 |
| antioxidant | 1.10, 3.03, 3.17, 3.18 |
| antioxidant properties | 3.22 |
| aphids | 1.24 |
| apolipoprotein | 7.06 |
| apomixis | 4.04, 7.04, 7.59 |
| APOSTART | 7.04 |
| apple | 2.10 |
| apple proliferation | 2.10 |
| Arabidopsis | 2.04, 3.01, 4.08 |
| Arabidopsis halleri | 2.02 |
| Arabidopsis thaliana | 2.05, 2.43, 4.07, 6.01, 7.62, S.04 |
| arbuscular mycorrhiza | 2.07, 2.40 |
| arbuscular mycorrhizal (AM) fungi | 2.09, 2.33, 2.34 |
| arbuscular mycorrhizal symbiosis | 2.31 |
| aroma | 3.23, 7.32 |
| artemisia | 3.09 |
| Artemisia annua | 3.08 |
| Artemisia petrosa subsp. eriantha | 3.07 |
| artemisinin | 3.09 |
| artichoke | 1.27, 2.38 |
| artificial inoculation | 2.25 |
| Arundo donax | 7.56 |
| Asparagus officinalis | 1.25 |
| assisted breeding | 7.33 |
| association mapping | 5.02, 5.04, 5.05, 5.06, 5.08, 5.10 |
| Aster sedifolius | 3.10 |
| Asteraceae | 3.07 |
| autoantigen | 7.05 |
| autocorrelation | 7.37 |
| auxin | 4.07, 7.26, 7.27 |
| auxin transporter | 7.28 |
| azaleas conservation | 7.66 |
B |
|
| BAC library | 7.22 |
| Bacillus subtilis | 2.56 |
| bacterial inoculation | 2.56 |
| barley | 2.06, 2.19, 2.60 |
| barley adaptation | 2.54 |
| barrel medic | 4.18 |
| beef production | 7.91 |
| berry | 4.11 |
| berry ripening | 3.14 |
| beta-ODAP | 7.44 |
| Beta vulgaris | 2.62 |
| bioactive molecules | 3.21 |
| bio-agronomical traits | 2.51 |
| biocontrol | 2.30 |
| biodiesel | 7.59 |
| biodiversity | 2.09, 2.37, 5.21, 7.30, 7.67 |
| bioinformatic | 6.08 |
| biomarkers | 6.05 |
| biomass | 7.56 |
| biosynthetic pathways | 4.15 |
| biotic stress | 2.01 |
| Bowman-Birk inhibitors | 7.43 |
| brachytic mutant | 7.28 |
| breeding | 1.21, 7.31, 7.34 |
| breeding for resistance | 2.26 |
| browing | 2.38 |
| brown leaf rust | 2.20 |
| Brown rot | 5.09 |
| Bubalus bubalis | 7.92 |
| Bulk segregant analysis | 5.10 |
C |
|
| caffeoylquinic acid biosynthesis | 3.11 |
| calcium | 2.10 |
| callus culture | 3.18 |
| Camellia sinensis | 2.11 |
| Camellia spp. | 7.67 |
| candidate gene | 2.61, 5.03, 5.12 |
| carotenogenesis | 4.09 |
| carotenoid | 3.01, 6.03 |
| carotenoid biosynthetic pathway | 1.08 |
| Carrizo citrange | 2.46 |
| cattle | 7.90 |
| CBF | 2.60, 2.61 |
| Cd tolerance | 2.05 |
| cDNA | 2.13 |
| cDNA-AFLP | 2.27, 2.44, 4.09 |
| celiac disease | 7.35 |
| cell cultures | 3.09, 3.15 |
| cell fate | 3.06 |
| cell specificity | 2.07 |
| cell wall | 4.11 |
| Ceratitis capitata | 2.64 |
| characterization | 7.79 |
| Chianina | 7.91 |
| chilling tollerance | 2.61 |
| chitinase | 1.26, S.02 |
| chlorogenic acid | 3.04 |
| chloroplast evolution | 7.08 |
| chloroplast ycf2 gene | 2.45 |
| chlorotype | 7.80 |
| chromatin | 4.10 |
| chromosome 12 sequencing | 1.09 |
| chromosome 5A | 7.12 |
| chromosome engineering | 2.24 |
| chromosome fragility | 7.90 |
| chromosome isolation | 7.41 |
| CHS | 7.76 |
| Citrullus | 1.01 |
| Citrus | 3.25, 4.09 |
| Citrus sinensis | 3.02 |
| classification | 7.67 |
| cline of variation | 7.37 |
| clonal variation | 7.70 |
| CMV | 6.09 |
| CO2 | 2.48 |
| co-expression | 6.02 |
| cold stress | 2.62, 2.63 |
| colonization | 7.86 |
| columnar | 7.78 |
| common bean | 1.18, 1.20 |
| comparative genomics | 7.08, 7.35 |
| comparative structural genomics | 1.17 |
| condensed tannins | 3.20 |
| confocal laser microscopy | 2.35 |
| cooking quality | 7.33 |
| COP9 signalosome | S.04 |
| co-regulatory pathways | 2.36 |
| correlation analysis | 6.01 |
| cost-benefit analysis | 7.53 |
| cpDNA | 1.18 |
| cpSSR | 7.80 |
| crop breeding | 2.47 |
| crop evolution | 1.20 |
| cry gene | 7.83 |
| Cucumber mosaic virus | 2.15 |
| Cucurbita ssp. | 1.23 |
| cultivar diffusion | 7.80 |
| Custom Probesets | 7.10 |
| CustomArrayTM semiconductor technology | 6.12, 7.03 |
| cyclooxygenase 2 | 3.17 |
| Cynara | 1.26 |
| Cynara cardunculus | 1.04 |
| Cynipid | 2.13 |
| cyto-histology | 7.73 |
| cytosine methylation | 4.10 |
| D | |
| DArT | 1.17 |
| Dasypyrum villosum | 2.21 |
| database | 4.05, 6.11 |
| Debaryomyces hansenii | 2.11 |
| delivery | 3.15 |
| demography | 7.86 |
| descriptors | 1.26 |
| detection | 7.03 |
| development | 1.27 |
| dietary fibre | 5.01 |
| differential display | 2.13, 7.81 |
| DIGE | 2.08, 6.09 |
| DIGE analysis | 6.05 |
| di-haploid | 1.25 |
| dioxin | 7.90 |
| disease resistance | 2.20, 2.23, 5.04, 5.09 |
| diversity | 1.19 |
| Diversity Array Technology | 5.21 |
| DNA barcoding | 1.18 |
| DNA extraction | 7.64 |
| DNA methylation | 2.57, 7.25 |
| DNA topoisomerase I | 4.18 |
| docking | 3.04 |
| domestication | 1.20, 1.21, 7.77 |
| domestication centres | 7.80 |
| Dreb2 | 4.16 |
| drought | 2.52, 2.54, 5.17 |
| drought resistance | 2.04 |
| drought stress | 2.51, 2.53, 2.55, 2.57 |
| drought tolerance | 7.34 |
| durable resistance | 2.21 |
| durum wheat | 2.14, 2.44, 2.52, 5.06, 5.08, 5.11, 5.13, 5.14, 5.15, 5.16, 7.18, 7.19, 7.21, 7.22 |
| durum wheat chain | 7.23 |
| dxs-1 | 3.12, 5.03 |
|
E |
|
| ear rot | 2.25 |
| ecophysiology | 2.49 |
| ectopic expression | 3.20 |
| EDV | 7.19 |
| ELISA | 7.35 |
| embryo development | 7.28 |
| endosperm texture | 7.40 |
| energy crop | 7.60 |
| energy production | 7.56 |
| enzymatic assay | 7.05 |
| enzyme specificity | 3.04 |
| epigenetics | 1.27 |
| essential oils | 3.25 |
| EST | 6.02, 7.66 |
| EST derived microsatellite | 1.04 |
| EST library | 1.06 |
| EST-SSR | 1.22, 7.87 |
| ethylene | 2.01, 4.09 |
| ethylmethane sulfonate | 7.31 |
| European beech | 2.48 |
| expressed sequence tags | 2.12 |
| expression analysis | 6.04, 7.16 |
|
F |
|
| fagiolo di Controne | 7.42 |
| fatty acids | 7.58 |
| feed | 7.02 |
| female determinant | 7.81 |
| fertility | 7.68 |
| fiber fractions | 7.47 |
| field and common pea | 1.21 |
| fine mapping | 5.16 |
| FISH | 7.90 |
| flanking sequences | 7.51 |
| flavonoids | 3.06 |
| flavonols | 3.14 |
| flavour compounds | 3.13 |
| flooding tolerance | 2.46 |
| flow cytogenetics | 7.41 |
| flow cytometric seed screens | 7.59 |
| flower development | 4.08, 7.72 |
| flowering model | 2.47 |
| flowering photoperiodic response | 1.08 |
| flowering time | 7.25 |
| flowers | 3.13 |
| fluorescent in situ hybridization | 7.41 |
| food authenticity | 7.23 |
| food fortification | 1.12 |
| food safety | 1.12 |
| forage legume | 7.46 |
| forest fragmentation | 7.85 |
| forward genetics | 7.38 |
| free-hybrids | 7.48 |
| Fr-H2 | 2.60 |
| frost tolerance | 5.02 |
| fruit quality | 2.29, 5.07 |
| functional genomics | 7.30 |
| functional markers | 5.12 |
| fungal antagonists | 2.30 |
| Fusarium resistance | 1.15 |
| Fusarium vertcillioides | 2.25, 2.26 |
| Fusarium wilt | 1.03 |
G |
|
| GA3 | 7.55, 7.68 |
| gabaculine | 2.58, 7.24, 7.50 |
| gall formation | 2.13 |
| gametocidal genes | 7.20 |
| gametophytic competition | 7.20 |
| gametophytic self-incompatibility | 7.73 |
| GC-MS | 3.07 |
| gene/repeat content | 1.02 |
| gene expression | 2.07, 2.10, 2.16, 2.17, 2.29, 2.40, 2.49, 2.51, 3.09, 3.13, 4.05, 4.10, 4.15, 7.61 |
| gene expression analysis | 7.92 |
| gene expression map | 4.12 |
| gene flow | 7.85 |
| gene function | 6.02 |
| gene introgression | 7.84 |
| gene ontology | 7.72 |
| gene pyramiding | 2.22 |
| gene regulation | 4.08, 7.17 |
| gene sequencing | 7.40 |
| gene structure | 2.38, 7.16 |
| GeneChip | 7.10 |
| genetic differentiation | 7.82, 7.84 |
| genetic distance | 1.23 |
| genetic diversity | 1.22, 3.16, 7.11, 7.80 |
| genetic drift | 7.86 |
| genetic linkage map | 1.15 |
| genetic map | 5.14, 7.12 |
| genetic mapping | 1.04, 3.11 |
| genetic resources | 2.37, 7.65 |
| genetic similarity | 7.19 |
| genetic structure | 7.36 |
| genetic transformation | 3.12, 7.46, 7.51 |
| genetic variability | 7.40, 7.56, 7.75, 7.82, 7.84, 7.87 |
| genome organization | 7.04 |
| genome structure | 6.13 |
| genome-wide transcriptional analysis | 6.05 |
| genomic library | 7.60 |
| genotype resistance | 2.25 |
| genotyping | 7.13 |
| GFP | 7.27 |
| glandular trichomes | 3.08 |
| globe artichoke | 2.08 |
| Glomeromycota | 2.34 |
| Glomus mosseae | 2.31, 2.40 |
| glutamine synthetase | 5.12 |
| glutathione transferase | 2.42 |
| GM | 7.03 |
| GMO biosafety | 7.46 |
| GMOs | 7.01 |
| grain yield | 5.13, 5.16 |
| grape | 3.05, 6.04, 6.11 |
| grapevine | 2.34, 3.14, 4.06, 7.71 |
| GSA-AT | 2.58, 7.50 |
| H | |
| hazelnut | 7.81 |
| HD-ZIP III transcription factors | 4.13 |
| health | 3.02 |
| heat shock | 2.58 |
| heat shock proteins | 1.13 |
| heat stress | 2.53 |
| heat tolerance | 2.59 |
| heavy metal | 2.02, 2.42 |
| heavy metal tolerance | 2.40 |
| Helianthus | 2.55 |
| hemL | 7.24 |
| hemp | 2.47 |
| heterologous expression | 7.43 |
| heterologous hybridizations | 7.10 |
| heterologous systems | 7.05 |
| heterosis | 5.19, 7.48 |
| heterozygosity levels | 7.48 |
| hidden Markov models | 6.08 |
| high amylose | 4.17 |
| high amylose starch | 7.14 |
| High Melting Resolution | 7.14 |
| high resolution phenotyping | 5.07 |
| high-throughput markers genotyping | 5.07 |
| histochemical GUS assay | 2.59 |
| histone modifications | 4.10 |
| HMW DNA | 7.22 |
| Hordeum vulgare | 5.02, 7.36, 7.37, 7.38, 7.39 |
| Horizontal Gene Transfer | 7.09 |
| host-pathogen interaction | 2.20 |
| HPLC | 4.09 |
| HSP70 | 2.58 |
| Hsp90 | 5.19 |
| hybrid fertility | 7.65 |
| hydroxycynnamoyl-quinate transferase genes | 3.04 |
| I | |
| image analysis | 2.04, 7.07 |
| IME | 7.61 |
| immunity | 2.64 |
| in silicoanalysis resistance gene | 1.11 |
| in situ hybridization | 4.14 |
| in vitro culture | 1.27, 7.55 |
| in vitro expression | 2.42 |
| insect pest | 2.64 |
| interspecific hybridization | 1.03, 1.16, 1.25 |
| intragenic plant | 7.46 |
| introgression library (IL) | 5.20 |
| introgression line | 1.05, 1.10, 1.12, 2.21 |
| intron | 7.61 |
| intron length polymorphisms | 7.11 |
| intron polimorphysms | 7.76 |
| ionomic | 1.12 |
| ipt gene | 7.46 |
| isoflavone synthase (IFS) | 3.21 |
| isolation | 7.79 |
| ISSR | 7.42 |
| ITS | 1.18 |
J |
|
| Jatropha curcas L. | 7.60 |
K |
|
| Kalanchoe xhoughtonii | 4.14 |
| kernel yellow pigment content | 5.05 |
| knockout mutant | 2.03 |
| knox genes | 4.14 |
| L | |
| Lactuca sativa | 1.24 |
| Lactuca virosa | 1.24 |
| land plants | 7.09 |
| landraces | 3.16, 7.37 |
| large-scale transcription profiling | 6.12 |
| laser microdissection | 2.07, 2.20, 2.31 |
| Lathyrus sativus | 1.22, 7.43, 7.44 |
| leaf | 7.45 |
| leaf area | 7.54 |
| leaf polarity | 4.01 |
| leaf rust | 2.21, 5.15 |
| leaf rust resistance | 5.08 |
| leaf stripe | 2.19 |
| linkage analysis | 1.04 |
| linkage disequilibrium | 7.36 |
| linkage map | 1.17, 5.15 |
| lipase activity | 2.28 |
| lipoxygenase | 7.21 |
| local adaptation | 7.86 |
| loop-mediated isothermal amplification | 7.64 |
| low input cultivation | 7.57 |
| low phytic acid mutation | 7.29 |
| LTR-retrotransposons | 6.13 |
| Lycopersicon esculentum Mill. | 3.16 |
| M | |
| MADS-box genes | 4.08 |
| maize | 5.18, 7.28, 7.29 |
| male germline | 7.20 |
| Malus | 7.77 |
| Malus domestica | 7.78 |
| Marchigiana | 7.91 |
| marker gene | 7.24, 7.69 |
| marker-assisted selection | 1.01 |
| markers | 5.17 |
| MAS | 5.10 |
| mating type | 7.88 |
| mean germination time | 7.68 |
| Medicago sativa | 2.56, 2.58, 7.47, 7.50, 7.51 |
| Medicago truncatula | 2.35, 7.45 |
| Mediterranean environments | 7.57 |
| meiosis | 7.04 |
| metabolic and transcriptional quantitative data | 3.14 |
| metabolic engineering | 3.10, 3.17 |
| metabolism | 6.01 |
| metabolite profiling | 7.17 |
| metabolomic | 6.03 |
| methylation-sensitive AFLP markers | 2.57 |
| microarray | 2.16, 2.27, 2.31, 2.48, 2.64, 3.23, 4.12, 4.15, 6.03, 6.04, 7.03, 7.10, 7.49 |
| microarray analysis | 2.26 |
| microcolonial fungi | 7.89 |
| micro-nutrients | 5.01 |
| microRNA | 4.05, 4.06, 6.11 |
| microRNA/target interaction | 6.07 |
| microsatellite | 7.18, 7.23, 7.60, 7.67, 7.79, 7.82, 7.84, 7.85 |
| mineral and multielement analysis | 7.53 |
| miRNA | 4.01, 4.02 |
| mitochondrial | 7.62 |
| mobile signal | 4.01 |
| modeling | 3.04 |
| molecular analysis | 7.74 |
| molecular characterization | 7.75 |
| molecular cloning | 3.19 |
| molecular fingerprinting | 7.53 |
| molecular haplotypes | 5.04, 5.08 |
| molecular markers | 1.23, 1.25, 2.34, 7.02, 7.32, 7.56, 7.59, 7.78 |
| monoecy | 2.47 |
| monoterpenes | 3.12, 5.03 |
| morphological characterization | 3.16 |
| morphological traits | 1.19 |
| morphometric analysis | 7.74 |
| mRNA-seq | 6.06, 6.10 |
| multilocus association | 7.36 |
| multi-parental population | 5.18 |
| multiplex | 1.11 |
| mutagenesis | 7.31 |
| Myb domain | 6.08 |
| MYB transcription factors | 3.20 |
| Mybleu | 2.46 |
| MYBs | 3.06 |
| mycorrhiza | 2.29 |
| N | |
| NAA | 7.55 |
| nanocapsules | 3.15 |
| Nera di Colletorto | 7.74 |
| next-generation DNA sequencing | 1.01 |
| Nicotiana | 7.52 |
| Nicotiana attenuata | 2.01 |
| Nicotiana spp | 7.63 |
| Nicotiana tabacum | 2.05, 3.12, 3.20, 7.06, 7.50, S.02 |
| NIRS analysis | 7.47 |
| nitric oxide arbuscular mycorrhizal symbiosis | 2.35 |
| Noccioluta | 7.74 |
| non-model species | 6.04 |
| normalization | 7.92 |
| NT doubled haploids | 2.54 |
| nuclear transformation | 7.06 |
| nuclear-cytoplasmic interaction | 7.17 |
| nutrient exchanges | 2.07 |
| O | |
| oat species | 7.40 |
| old hybrids | 7.66 |
| Olea europaea | 2.12, 7.72, 7.76 |
| oligo-microarrays | 4.03 |
| Omega-3 fatty acid desaturase | 2.59 |
| "Omics sciences | 6.07 |
| ontologies | 6.11 |
| origin cultivated tobacco | 7.52 |
| ornamental plants | 7.63 |
| Orobanche crenata | 2.32 |
| orthologous genes | 1.02 |
| Oryza sativa L. | 7.32 |
| outlier loci | 7.36 |
| overexpression and RNAi constructs | 3.19 |
| oxidative phosphorylation gene | 7.62 |
| oxydative stress | 2.26 |
P |
|
| parthenocarpic mutants | 7.55 |
| Paspalum simplex | 4.04 |
| pasta colour | 7.21 |
| pathogenic fungi | 2.33 |
| pattern formation | 4.01 |
| PCR | 7.02 |
| PCR select | 1.14 |
| PEG-induced water stress | 2.56 |
| peroxidase | 7.81 |
| Persian walnut | 7.79 |
| petunia | 3.05 |
| P-glycoproteins | 7.28 |
| pharmaceuticals | 7.06 |
| Phaseolus vulgaris L. | 1.19, 7.42 |
| Phenylalanine Ammonia Lyase | 7.09 |
| phenylpropanoid metabolism | 7.09 |
| photoprotection | 3.01 |
| photoperiodic response | 2.47 |
| photoreceptors | 6.12 |
| photosynthesis | 2.48 |
| photosynthetic activity | 7.69 |
| phyllosphere yeasts | 2.11 |
| phylogenesis | 7.77 |
| phylogenetic analysis | 2.55 |
| phylogeny | 2.36, 7.52 |
| Phytochelatins | 2.05 |
| Phytoene synthase 2 | 5.11 |
| PIN family | 7.26 |
| PIN1 | 7.27 |
| Pisum sativum | 2.18, 2.32 |
| plant breeding | 7.65 |
| plant defence | 2.01, 2.28 |
| plant defense response | 2.15 |
| plant development | S.04 |
| plant disease | 1.07, 1.24, 2.32, 2.45, S.02 |
| plant genetics | 2.30 |
| plant reproduction | 4.04 |
| plant stress | 2.43 |
| plant transformation | 2.46 |
| plant-pathogen interaction | 1.14 |
| plant-virus interactions | 2.16 |
| plastid gene expression | 4.03 |
| plastid transformation | 7.06 |
| plastids differentiation | 1.13 |
| PLFA | 1.16 |
| Polar Auxin Transport | 7.26, 7.27 |
| pollen embryogenesis | 3.25 |
| pollen maturation | 4.07 |
| polymorphism | 7.60 |
| polyphenol oxidase | 2.38 |
| polyphenols | 3.18, 3.22 |
| polyploids | 7.54 |
| polyploidy | 7.13 |
| poplar | 2.40, 2.49 |
| poplar transgenic lines | 7.83 |
| population genetics | 7.59 |
| Populus trichocarpa | 6.13 |
| post-transcriptional regulation | 4.03 |
| potato | 6.03 |
| powdery mildew | 1.07, 2.18, 2.23, 5.09 |
| PR genes | 2.26 |
| pre-germination | 7.68 |
| programmed cell death | 2.15 |
| prolamin (Kafirin) | 7.35 |
| protease | 1.13 |
| protein composition | 5.01 |
| protein content | 7.44 |
| protein degradation | S.04 |
| Protein disulfide isomerase (PDI) gene family | 7.16 |
| Protein Disulfide Isomerase (PDI) promoter | 7.15 |
| protein localization | 2.03 |
| proteomic analysis | 2.08, 6.09 |
| provitamin A | 3.01 |
| Prunus persica | 3.23, 5.09 |
| pubescent oak | 7.84 |
| Pyrenophora graminea | 2.06 |
| pyrosequencing | 1.06 |
Q |
|
| qPCR | 4.14 |
| qRT-PCR | 2.03 |
| Quantitative Trait Loci (QTL) | 2.19, 2.23, 2.54, 5.13, 5.16, 5.17, 5.18, 5.19, 5.20 |
| QTL analysis | 5.09 |
| QTL mapping | 5.07 |
| QTL pyramiding | 1.05 |
| quantitative PCR | 7.23 |
| quantitative RT-PCR | 2.17 |
| quinic acids | 3.10 |
R |
|
| RAPD | 1.23 |
| Rdg1a | 2.19 |
| Rdg2a | 2.06 |
| rDNA genes | 2.09 |
| Real Time PCR | 2.50, 2.62, 7.01 |
| Real time RT-PCR | 2.29 |
| recombinant antibodies | 6.09 |
| recombinant inbred populations | 5.05 |
| red orange | 2.63 |
| reference genes | 2.17, 7.92 |
| Regions of Provenance | 7.82 |
| reproductive behaviour | 2.64 |
| resistance gene | 1.03, 1.07, 1.14, 1.24, 2.01, 2.06, 2.13, 2.14, 2.18, 2.19, 2.22, 2.27, 2.32, 5.15, S.02 |
| resistance QTL | 1.07 |
| reverse genetics | 7.30, 7.38, 7.39 |
| RFLP | 2.09 |
| rhizosphere microorganisms | 2.02 |
| rice | 2.36, 2.37, 3.22, 7.30, 7.31, 7.33, 7.34 |
| RIP (Ribosome Inactivating Protein) | 2.33 |
| ripening | 3.23 |
| ripening and post-harvest withering | 6.05 |
| RNA binding protein | 2.03 |
| RNA interference | 4.17 |
| RNAi | 1.13, 2.59 |
| root morphology | 7.38 |
| root traits | 5.20 |
| rootstocks | 2.41 |
| ROS | 2.15 |
| Rosa | 7.67 |
| Rosa x hybrida L. | 7.68 |
| Roundup Ready soybean | 7.01 |
| RTqPCR | 7.92 |
| rust | 7.64 |
S |
|
| S locus | 7.81 |
| salt tolerance | 2.44 |
| SAR | 2.10 |
| SBCMV | 2.14 |
| SCE | 7.90 |
| SDS-PAGE | 7.18 |
| secondary metabolites | 3.11, 7.53, 7.54 |
| secular olive | 7.75 |
| seed | 4.18, 7.07 |
| seed traits | 7.44 |
| selectable marker genes | 7.50 |
| selection | 7.37, 7.86 |
| sesquiterpene biosynthesis | 3.09 |
| sesquiterpenes | 3.07 |
| sexual reproduction | 7.88 |
| shading | 2.50 |
| signal transduction mechanisms | 3.24 |
| single nucleotide polymorphism |
1.01, 1.06, 1.11, 1.15, 1.18, 1.19, 1.20, 2.37, 7.13, 7.77, 7.91 |
| SLF | 7.73 |
| SNP marker development | 3.11 |
| SNPlexTM | 7.70 |
| soils | 2.41 |
| Solanaceae | 3.01 |
| Solanaceae genomics | 1.02 |
| Solanum | 7.54 |
| Solanum aethiopicum | 1.14, 1.16 |
| Solanum commersonii | 2.27 |
| Solanum integrifolium | 1.16 |
| Solanum lycopersicumL. |
1.12, 2.15, 2.17, 2.30, 2.59, 2.61, 3.03, 3.18, 7.55 |
| Solanum melongena | 1.14, 1.15 |
| Solanum pennellii | 3.18 |
| Solanum sodomaeum | 1.16 |
| Solanum spp | 1.03, 3.03 |
| Solanum tuberosum | 7.53 |
| Solanum tuberosum plastids | 4.03 |
| sorghum | 7.35 |
| spatial genetic structure | 7.85 |
| splicing | 4.06 |
| SPME-GC-MS | 3.08 |
| SRNase | 7.73 |
| SSH | 7.72 |
| SSR (simple sequence repeat) | 7.19, 7.42, 7.88 |
| SSR markers | 7.48 |
| stamen elongation | 4.07 |
| starch | 4.17 |
| starch branching IIa | 7.14 |
| starch metabolism | 7.39 |
| starch synthase IIa | 7.33 |
| starch-bound proteins | 7.40 |
| statistical analysis | 7.74 |
| stem phenological stage | 7.47 |
| stem rust | 2.22 |
| stilbene synthase | 3.17 |
| stilbenes | 3.15 |
| STMS | 7.66 |
| stomata parameters | 7.54 |
| stomatal conductance | 2.52 |
| stress resistance | 5.06 |
| stress response | 2.37 |
| stress tolerance | 1.13, 1.26, 2.45, 2.53, 5.14, S.02 |
| structured association | 5.03 |
| STS | 7.02 |
| subcellular localization | 2.28 |
| subtractive hybridization | 2.63 |
| sucrose metabolism | 2.62 |
| sugar beet | 2.62 |
| sunflower | 2.55, 7.58 |
| sunflower breeding | 7.57 |
| suppression subtractive hybridization | 2.12, 2.30 |
| sustainable agriculture | 2.09 |
| sweet orange | 2.42, 3.24 |
| synteny | 7.16 |
| Systems Biology | 6.07 |
T |
|
| T1DM | 7.05 |
| Tamarix | 7.87 |
| tannin | 7.45 |
| target validation | 4.06 |
| ta-siRNA | 4.01 |
| Taxus baccata | 7.85 |
| tea fermentation | 2.11 |
| terpenoids | 3.13 |
| tetraploidization | 7.49 |
| thermospermine | 4.13 |
| thujones | 3.07 |
| TILLING | 1.10, 4.17, 7.14, 7.30, 7.38, 7.39 |
| TILLING population | 7.58 |
| Tnt1 mutagenesis | 7.45 |
| tomatinase | 3.19 |
| tomato | 1.09, 2.04, 2.29, 2.31, 2.51, 6.02, 6.03, 6.12 |
| tomato fruit quality | 1.05 |
| tomato fruits | 3.17 |
| tomato genome | 1.11 |
| tomato genome project | 1.02 |
| traceability | 7.02, 7.23 |
| trait purity | 7.01 |
| transcription | 6.01 |
| transcription factor | 2.04, 2.36, 3.02, 3.05, 3.24 |
| transcriptional complex | 3.06 |
| transcriptional coordination | 7.62 |
| transcriptional profile | 1.10 |
| transcriptome analysis | 2.36, 2.53, 6.06, 6.10 |
| transcriptome wide analyses | 4.15 |
| transcriptomic analysis | 1.05 |
| transcriptomics | 7.49 |
| transduction | 6.01 |
| transgenic rice | 2.33 |
| transgenic tomato | 6.09 |
| transient transformation | 7.61 |
| transposable elements | 7.70 |
| Transposon Display | 7.70 |
| Tranzschelia discolor | 7.64 |
| tree architecture | 7.78 |
| trichomes | 3.06 |
| triterpene saponins | 3.10 |
| Triticum aestivum | 2.24, 5.01 |
| Triticum durum Desf. | 2.23, 2.24, 2.53, 5.04, 5.05 |
| Triticum turgidum | 2.20 |
| Tuber melanosporum | 7.88 |
| tubulins | 7.11 |
| Tyrosyl-DNA phosphodiesterase | 4.18 |
U |
|
| ubiquitin | S.04 |
| Ug99 | 2.22 |
| untargeted large-scale metabolomics | 6.05 |
| UPOV | 1.26 |
| UV-B stress | 2.49 |
| UV-C stress | 2.08 |
| uvr8 | 2.43 |
V |
|
| vacuolar transporter | 2.05 |
| variability analysis | 7.15 |
| varietal identification | 7.32 |
| varieties identification | 7.07 |
| vascular development | 4.13 |
| vector backbone | 7.51 |
| vegetative vivipary | 4.14 |
| vh gene | 7.69 |
| Vicia sativa L. | 7.07 |
| Vicia villosa Roth. | 7.07 |
| Vigna unguiculata | 3.21 |
| virus induced gene silencing | 2.28 |
| virus infection | 2.17 |
| Vitis spp | 2.34 |
| Vitis vinifera | 2.41, 2.50, 2.57, 3.12, 3.13, 3.15, 4.02, 4.11, 4.12, 5.03, 5.21, 6.10, 7.69, 7.70 |
| Vitreoscilla stercoraria | 7.69 |
W |
|
| water stress | 5.13 |
| water stress/adaptation | 2.03 |
| water use efficiency | 2.52 |
| waxy | 7.33 |
| wheat | 2.22, 4.17, 5.12, 5.17, 7.12, 7.13, 7.14, 7.15, 7.16, 7.17 |
| wheat improvement | 7.41 |
| wheat scab | 2.24 |
| wheat transformation | 7.24 |
| wheat-alien introgression | 7.20 |
| whitefly-transmitted geminivirus | 2.16 |
| wild potato species | 1.17 |
| wild tomato species | 1.08 |
| wild Vitis species | 7.71 |
X |
|
| xenobiotics | 2.42 |
Y |
|
| yeast ecology | 2.11 |
| yeasts | 7.89 |
| yellow pigment | 5.11 |
| yield | 2.54, 7.44 |
Z |
|
| Zea mays L. | 2.25, 3.02, 4.10, 4.15, 5.19, 5.20, 7.25, 7.26, 7.27 |















